
© Fraunhofer FIRST

J. Reinier van Kampenhout and Robert Hilbrich

30.06.2011

Partitioning and Task Transfer on NoC-based
Many-Core Processors in the Avionics Domain

© Fraunhofer FIRST

Seite 2

Fraunhofer FIRST

Fraunhofer-Institut für Rechnerarchitektur und Softwaretechnik,

Berlin

Departments:

– Modeling

– Systems Architecture

– Quality Assurance

© Fraunhofer FIRST

Seite 3

Contents

I. Trends

· Introduction

· Software Partitioning in Avionics Systems

· Many-Core Processors and Networks-on-Chip

II. Contribution

· Partitioning on Many-Core Processors

· Task Migration

III. Task Transfer Experiments

· Experimental Setup

· Results

IV. Conclusions

© Fraunhofer FIRST

Seite 4

I. TRENDS

© Fraunhofer FIRST

Seite 5

Introduction

Many-core processors (> 32 cores):

– Increased performance without excessive power consumption

– Less complex cores simplifies timing analysis

Potentially save Space, Weight and Power
(SWaP) in avionics systems

Challenges :

– Parallelization/consolidation of software

– Efficient deployment

– Reliability

© Tilera Corporation.

© Fraunhofer FIRST

Seite 6

Software Partitioning in Avionics Systems 1/2

Federated architectures :

– “One function – one computer”

– Fault containment by design

Integrated Modular Avionics (IMA):

– Shared computing platform

– Reduce cost and SWaP requirements

– Achieve fault containment through
software partitioning

Source: Watkins2007, Transitioning from federated avionics
architectures to integrated modular avionics.

© Fraunhofer FIRST

Seite 7

Software Partitioning in Avionics Systems 2/2

Partitioning:

– Isolate groups of related tasks:

· Temporal partitioning

· Spatial partitioning

– Avoid non-transparent fault propagation

Task execution models:

– Synchronous tasks:

· Periodic

· Scheduled statically

– Asynchronous tasks:

· Event or data driven

© Fraunhofer FIRST

Seite 8

Many-Core Processors and Networks-on-Chip 1/2

Many-cores:

– Increase throughput instead of clock frequency

– Scalable on-chip interconnect: networks

– Communication-centric design:

· Inter-core communication and access to shared resources

· Complicates timing analysis

© Fraunhofer FIRST

Seite 9

Many-Core Processors and Networks-on-Chip 2/2

Networks-on-Chip (NoC):

– Scalable networks based on packet switching

– Problems:

· Contention: concurrent access of shared links and routers

· Congestion: packets wait for other packets

· Unpredictable delays

– Solutions:

· Resource reservation

· Quality-of-Service (QoS):

· Flow control

· Buffering

© Fraunhofer FIRST

Seite 10

II. CONTRIBUTION

© Fraunhofer FIRST

Seite 11

Partitioning on Many-Core Processors 1/3

We propose to extend partitioning to deal with many-core architectures

Temporal partitioning:

– Per-core schedule

Spatial partitioning:

– Mapping of tasks to cores

– Mapping of traffic onto the NoC, requires:

· Per-link schedule

· Traffic profiling

· Reservation mechanisms, e.g. circuit switching

· Isolation

© Fraunhofer FIRST

Seite 12

Partitioning on Many-Core Processors 2/3

Proposed partition types:

1. Fixed:

· Highly critical synchronous tasks, statically mapped and scheduled

· Completely deterministic but costly

2. Mode-based:

· Mapping and schedule change according to modes

· Optimization of resource usage

3. Flexible:

· Asynchronous low-critical tasks

· Dynamic reconfiguration allows to exploit idle resources

© Fraunhofer FIRST

Seite 13

Partitioning on Many-Core Processors 3/3

Reconfiguration:

– Resize

· Borrow idle resources

– Relocate

· Decrease communication
distance

– Fault-tolerance:

· Duplicating faulty partition

· Avoid use of faulty
hardware

– Requires task migration

© Fraunhofer FIRST

Seite 14

Task Migration

Different from migration in multi-processor systems:

– Small local memory

– Limited OS functionality

– Transfer over Network-on-Chip

· Faster

© Fraunhofer FIRST

Seite 15

III. EXPERIMENTS

© Fraunhofer FIRST

Seite 16

Experimental Setup 1/2

Goal: evaluate which transfer methods can offer deterministic task
migration

Experiments:

– Migration of code and dataset

Test platform: Tilera TILEPro64™

· 64 cores

· Separate L1-data and -instruction caches

· L2 cache, aggregate can be combined
into coherent shared L3 cache

· Six 2-d mesh networks

· XY wormhole routing

· Two programmer accessible networks

© Fraunhofer FIRST

Seite 17

Experimental Setup 2/2

Data transfer methods:

– With coherent shared cache:

· Cache pull

· Prefetching

· Explicit copy

– With message passing:

· User Dynamic Network (UDN)

· STatic Network (STN)

Time measurements:

– Standard deviation < 0,2 ns

– Overhead is constant, 31 ns

– 10.000 iterations

© Fraunhofer FIRST

Seite 18

Results 1/3

– Linear growth: scalable

– Use of shared cache twice as fast: others need store instruction

© Fraunhofer FIRST

Seite 19

Results 2/3

– Timing anomaly for cache-pull method shows unpredictability

© Fraunhofer FIRST

Seite 20

Results 3/3

Analysis :

– All methods are scalable

– Prefetching

· Fast

· Deterministic, as opposed to cache-pull

– Maximum absolute deviation from mean is 0,4 μs

· Upper bound on transfer time can be found

– Four out of five transfer methods have potential for deterministic task
migration

© Fraunhofer FIRST

Seite 21

IV. CONCLUSIONS

© Fraunhofer FIRST

Seite 22

Conclusions 1/2

Trends and contribution:

– Account for on-chip interconnect:

· Reservation of capacity

· Guarantees on QoS

· Isolation of traffic

– Extension of partitioning to many-cores

· Mapping and scheduling of:

· Tasks to cores

· Traffic onto the NoC

– Mode-based and flexible partitions:

· Optimize hardware usage

· Requires deterministic task migration

© Fraunhofer FIRST

Seite 23

Conclusions 2/2

Experiments:

– Timing analysis of large coherent shared caches not feasible

· Determinism can be achieved with cache locking and prefetching

· Reservation and thus partitioning of memory networks difficult

– UDN slower, but can be partitioned in software

· “Hardwall” enables traffic isolation

– STN naturally implements circuit switching

· Requires programming of switches

– Combination of transfer methods: strong isolation

– Experiments show feasibility of concepts

© Fraunhofer FIRST

Seite 24

END OF PRESENTATION

