Partitioning and Task Transfer on NoC-based
Many-Core Processors in the Avionics Domain

J. Reinier van Kampenhout and Robert Hilbrich
30.06.2011

\

~ Fraunhofer

FIRST

© Fraunhofer FIRST

N
Fraunhofer FIRST

Fraunhofer-Institut fur Rechnerarchitektur und Softwaretechnik,
Berlin

Departments:
— Modeling
— Systems Architecture

— Quality Assurance

=

Seite 2

\

~ Fraunhofer

FIRST

© Fraunhofer FIRST

Contents

I. Trends
Introduction
Software Partitioning in Avionics Systems
Many-Core Processors and Networks-on-Chip

Il. Contribution
Partitioning on Many-Core Processors
Task Migration

I1l. Task Transfer Experiments
Experimental Setup
Results

IV.Conclusions

Seite 3

\

© Fraunhofer FIRST % Frau nhOfer

FIRST

. TRENDS

Seite 4

\

L
© Fraunhofer FIRST ~ Fraunhofer
FIRST

Introduction

Many-core processors (> 32 cores):
— Increased performance without excessive power consumption
— Less complex cores =» simplifies timing analysis

Potentially save Space, Weight and Power
(SWaP) in avionics systems “

'h#ﬁh#ﬂhj
+++++++

tm}+++++++'m
Ch ” . +++++++ 2 GbE 1

- :ar:ﬂglie:ation/consolidation of software + + + + + + +

— Efficient deployment Cjl’""“ IIIIIII "l‘l}:ﬁ
_ Reliability R I e

Seite 5

© Tilera Corporation. ==
P ~ Fraunhofer
FIRST

© Fraunhofer FIRST

Software Partitioning in Avionics Systems

Federated architectures:

— “One function — one computer”
— Fault containment by design

Integrated Modular Avionics (IMA):

— Shared computing platform
— Reduce cost and SWaP requirements

— Achieve fault containment through
software partitioning

o | o Actuators Sensors
|| v 1
e ZF| 2
<o 5 k= . .

~ /O 'O
CPU CPU CPU
'O /O /O
Actuators Sensors
S| &% A '
a|a| & [7
&) 5) Common
~ /O
Network Network
Interface Interface
Network
Interface

Source: Watkins2007, Transitioning from federated avionics

© Fraunhofer FIRST

architectures to integrated modular avionics.

Common

CPU

\

~Z Fraunhofer

FIRST

Software Partitioning in Avionics Systems 2/2

Partitioning:
— lIsolate groups of related tasks:
Temporal partitioning
Spatial partitioning
— Avoid non-transparent fault propagation

Task execution models:
— Synchronous tasks:
Periodic
Scheduled statically
— Asynchronous tasks:
Event or data driven

Seite 7

© Fraunhofer FIRST % Frau nhOfer

FIRST

Many-Core Processors and Networks-on-Chip 1/2

Many-cores:

— Increase throughput instead of clock frequency

— Scalable on-chip interconnect: networks

— Communication-centric design:
Inter-core communication and access to shared resources
Complicates timing analysis

. ™ N
F — /—: / r
SN Memory

N %

N
t AN = l p []
L\ i J Router}:[Core }
— -

=
© Fraunhofer FIRST % Frau nhOfer

FIRST

.

.

Seite 8

Many-Core Processors and Networks-on-Chip 2/2

Networks-on-Chip (NoC):
— Scalable networks based on packet switching

— Problems:

Contention: concurrent access of shared links and routers

Congestion: packets wait for other packets
Unpredictable delays

— Solutions:
Resource reservation
Quality-of-Service (QoS):
Flow control
Buffering

Network-on-Chip

© Fraunhofer FIRST

Core

Core

Seite 9

~ Fraunhofer

FIRST

. CONTRIBUTION

Seite 10

\

=
© Fraunhofer FIRST ~ Fraunhofer

FIRST

Partitioning on Many-Core Processors 1/3
We propose to extend partitioning to deal with many-core architectures

Temporal partitioning:
— Per-core schedule

Spatial partitioning:

— Mapping of tasks to cores

— Mapping of traffic onto the NoC, requires:
Per-link schedule
Traffic profiling
Reservation mechanisms, e.g. circuit switching
Isolation

J

s
=

) Q/

-

N
=
Y

)
)

Seite 11

/
N
/
~
»

(
(

N\

Fraunhofer

FIRST

© Fraunhofer FIRST

Partitioning on Many-Core Processors

Proposed partition types:
1. Fixed:

2/3

Highly critical synchronous tasks, statically mapped and scheduled
Completely deterministic but costly

2. Mode-based:

Mapping and schedule change according to modes

Optimization of resource usage

3. Flexible:

Asynchronous low-critical tasks

Dynamic reconfiguration allows to exploit idle resources

I I I / / I

<« Mode,

»<

|| |,
4

© Fraunhofer FIRST

Mode,———»

Seite 12

~ Fraunhofer

FIRST

Partitioning on Many-Core Processors 3/3

Reconfiguration:
— Resize

Borrow idle resources
— Relocate

Decrease communication
distance

— Fault-tolerance:
Duplicating faulty partition

Avoid use of faulty
hardware

— Requires task migration

Seite 13

\

© Fraunhofer FIRST ~ Fraunhofer

FIRST

Task Migration

Different from migration in multi-processor systems:
— Small local memory

— Limited OS functionality
— Transfer over Network-on-Chip

Faster

p
4 Memory

Ceode > Cdata>

Switch

2,

© Fraunhofer FIRST

B A U

Ceode > Cdata >

~
Memory)

context >
J

Switch

Seite 14

\

~ Fraunhofer

FIRST

lll. EXPERIMENTS

Seite 15

\

=
© Fraunhofer FIRST ~ Fraunhofer

FIRST

Experimental Setup 1/2
Goal: evaluate which transfer methods can offer deterministic task
migration
/([2 cache))
. . 2 cache
Experlmc.ents. [T Y LId
— Migration of code and dataset b X dib
_ 2DDMA > N
Test platform: Tilera TILEPro64™ T Switch
64 cores)
Separate L1-data and -instruction caches
L2 cache, aggregate can be combined CPU
into coherent shared L3 cache |)
Six 2-d mesh networks

XY wormhole routing
Two programmer accessible networks

Seite 16

\

© Fraunhofer FIRST % Frau nhOfer

FIRST

Experimental Setup 2/2
60
Data transfer methods: _sof
— With coherent shared cache:]
Cache pull 2 o
Prefetching % 20 ke
Explicit copy R e e
- With message paSSing: 00 1i0 2i0 3i0 4i0 5i0 60
User Dynamic Network (UDN) Calculated time [us]
STatic Network (STN) le_‘;l AR AR
G LES e
Time measurements: E
— Standard deviation < 0,2 ns % 15()# _____ _____ _____ _
— Overhead is constant, 31 ns § vasfoio
— 10.000 iterations 3 LAOE
1.350 ll'O 2|0 3|0 4|0 5|0 60
Calculated time [us] Seite 17
© Fraunhofer FIRST Z Fraunhofer

FIRST

N
Results 1/3

50

e Cache-pull
~a Prefetch
40|w-a Copy

-« UDN

oo STN

W
(=)

Time [us]
N
=~

100 —— - o
—_— e e e 1

1900 2000 3000 4000 5000 6000 _ 7000 _ 8000
Task and dataset size [bytes]

— Linear growth: scalable
— Use of shared cache twice as fast: others need store instruction

Seite 18

\

~ Fraunhofer

FIRST

© Fraunhofer FIRST

Results 2/3

| | | | | | - |e-e Cache-pull
""""""" ey Prefetch

ﬁ l ﬁ | ﬁ : _|== Copy
------------ ;“-"-”-"-”:"-“-”-“-"1"-"-"-“-"-J-"-“-"-“-T-“-”-“-”-}-”-"-“-"-"(-"‘ UDN
------------- i |ee STN

. o ¢ .
i i E i
| i i i

=

*
E
7

0 1 2 3 4 5 6
Additional iterations of experiment

— Timing anomaly for cache-pull method shows unpredictability

Seite 19

\

© Fraunhofer FIRST % Frau nhOfer

FIRST

Results 3/3

Analysis:
— All methods are scalable

— Prefetching
Fast
Deterministic, as opposed to cache-pull

— Maximum absolute deviation from mean is 0,4 ps
Upper bound on transfer time can be found

— Four out of five transfer methods have potential for deterministic task
migration

Seite 20

\

© Fraunhofer FIRST % Frau nhOfer

FIRST

IV. CONCLUSIONS

Seite 21

L
© Fraunhofer FIRST ~ Fraunhofer

FIRST

Conclusions 1/2

Trends and contribution:

— Account for on-chip interconnect:
Reservation of capacity
Guarantees on QoS
Isolation of traffic

— Extension of partitioning to many-cores
Mapping and scheduling of:
Tasks to cores
Traffic onto the NoC

— Mode-based and flexible partitions:
Optimize hardware usage

Requires deterministic task migration
Seite 22

\

© Fraunhofer FIRST % Frau nhOfer

FIRST

Conclusions 2/2

Experiments:

— Timing analysis of large coherent shared caches not feasible
Determinism can be achieved with cache locking and prefetching
Reservation and thus partitioning of memory networks difficult

— UDN slower, but can be partitioned in software
“Hardwall” enables traffic isolation

— STN naturally implements circuit switching
Requires programming of switches

— Combination of transfer methods: strong isolation

— Experiments show feasibility of concepts

Seite 23

\

© Fraunhofer FIRST % Frau nhOfer

FIRST

END OF PRESENTATION

L
© Fraunhofer FIRST ~ Fraunhofer
FIRST

