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Introduction

Many-core processors (> 32 cores):
— Increased performance without excessive power consumption
— Less complex cores =» simplifies timing analysis

Potentially save Space, Weight and Power
(SWaP) in avionics systems “
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Software Partitioning in Avionics Systems

Federated architectures:

— “One function — one computer”
— Fault containment by design

Integrated Modular Avionics (IMA):

— Shared computing platform
— Reduce cost and SWaP requirements

— Achieve fault containment through
software partitioning
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Software Partitioning in Avionics Systems 2/2

Partitioning:
— lIsolate groups of related tasks:
Temporal partitioning
Spatial partitioning
— Avoid non-transparent fault propagation

Task execution models:
— Synchronous tasks:
Periodic
Scheduled statically
— Asynchronous tasks:
Event or data driven
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Many-Core Processors and Networks-on-Chip 1/2

Many-cores:

— Increase throughput instead of clock frequency

— Scalable on-chip interconnect: networks

— Communication-centric design:
Inter-core communication and access to shared resources
Complicates timing analysis
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Many-Core Processors and Networks-on-Chip 2/2

Networks-on-Chip (NoC):
— Scalable networks based on packet switching

— Problems:

Contention: concurrent access of shared links and routers

Congestion: packets wait for other packets
Unpredictable delays

— Solutions:
Resource reservation
Quality-of-Service (QoS):
Flow control
Buffering

Network-on-Chip
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Partitioning on Many-Core Processors 1/3
We propose to extend partitioning to deal with many-core architectures

Temporal partitioning:
— Per-core schedule

Spatial partitioning:

— Mapping of tasks to cores

— Mapping of traffic onto the NoC, requires:
Per-link schedule
Traffic profiling
Reservation mechanisms, e.g. circuit switching
Isolation
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Partitioning on Many-Core Processors

Proposed partition types:
1. Fixed:

2/3

Highly critical synchronous tasks, statically mapped and scheduled
Completely deterministic but costly

2. Mode-based:

Mapping and schedule change according to modes

Optimization of resource usage

3. Flexible:

Asynchronous low-critical tasks

Dynamic reconfiguration allows to exploit idle resources
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Partitioning on Many-Core Processors 3/3

Reconfiguration:
— Resize

Borrow idle resources
— Relocate

Decrease communication
distance

— Fault-tolerance:
Duplicating faulty partition

Avoid use of faulty
hardware

— Requires task migration
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Task Migration

Different from migration in multi-processor systems:
— Small local memory

— Limited OS functionality
— Transfer over Network-on-Chip
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Experimental Setup 1/2
Goal: evaluate which transfer methods can offer deterministic task
migration
/( [2 cache ) )
. . 2 cache
Experlmc.ents. [T Y LId
— Migration of code and dataset b X dib
_ 2DDMA > N
Test platform: Tilera TILEPro64™ T Switch
64 cores )
Separate L1-data and -instruction caches
L2 cache, aggregate can be combined CPU
into coherent shared L3 cache | )
Six 2-d mesh networks

XY wormhole routing
Two programmer accessible networks
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Experimental Setup 2/2
60 . . . . .
Data transfer methods: _sof
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Results 1/3
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— Linear growth: scalable
— Use of shared cache twice as fast: others need store instruction
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Results 2/3
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— Timing anomaly for cache-pull method shows unpredictability
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Results 3/3

Analysis:
— All methods are scalable

— Prefetching
Fast
Deterministic, as opposed to cache-pull

— Maximum absolute deviation from mean is 0,4 ps
Upper bound on transfer time can be found

— Four out of five transfer methods have potential for deterministic task
migration
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IV. CONCLUSIONS
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Conclusions 1/2

Trends and contribution:

— Account for on-chip interconnect:
Reservation of capacity
Guarantees on QoS
Isolation of traffic

— Extension of partitioning to many-cores
Mapping and scheduling of:
Tasks to cores
Traffic onto the NoC

— Mode-based and flexible partitions:
Optimize hardware usage

Requires deterministic task migration
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Conclusions 2/2

Experiments:

— Timing analysis of large coherent shared caches not feasible
Determinism can be achieved with cache locking and prefetching
Reservation and thus partitioning of memory networks difficult

— UDN slower, but can be partitioned in software
“Hardwall” enables traffic isolation

— STN naturally implements circuit switching
Requires programming of switches

— Combination of transfer methods: strong isolation

— Experiments show feasibility of concepts
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