
Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

1

Entwicklung zuverlässiger Software-Systeme, Stuttgart 30.Juni 2011

Tools and Methods for Validation and Verification as requested by ISO26262

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

2

− Goal:

− Functional safety of electrical/electronic/programmable electronic safety-related systems

− Provides

− measures for an automotive safety lifecycle (management, development, production,

operation, service, decommissioning)

− an automotive specific risk-based approach for determining risk classes (Automotive

Safety Integrity Levels, ASILs);

− requirements for validation and confirmation measures to ensure a sufficient and

acceptable level of safety being achieved.

Tools and Methods for Validation and Verification

Introduction ISO26262

“ISO 26262 is the adaptation of IEC 61508 to

comply with needs specific to the application

sector of E/E systems within road vehicles.

This adaptation applies to all activities during

the safety lifecycle of safety-related systems

comprised of electrical, electronic, and software

elements that provide safety-related functions.”

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

3

Tools and Methods for Validation and Verification

Software development process in ISO26262

Depending on the ASIL, ISO26262
• gives principles for design
• suggests mechanisms for error detection
• demands methods for the verification
• suggests methods for testing and deriving test cases&

metrics cases
 on both software unit and architectural level

ISO26262 follows a V-cycle
development approach

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

4

Tools and Methods for Validation and Verification

ISO26262 Software Unit & Integration Test methods

Methods for software testing at architectural (integration) and unit level
(according to ISO26262 part 6, chapter 9.4.3 and 10.4.3)

• Requirements-based test (=validation)
• Interface test
• Fault injection test

 “.. Includes injection of arbitrary faults in order to test safety mechanisms (e.g.
by corrupting software or hardware components”

• Resource usage test
 “.. average/maximum processor performance, min/max execution times,
storage usage (stack, program, data), bandwidth of communication links..”

• Back-to-back comparison test between model and code (if applicable)
 “.. model that can simulate the functionality of the software components. Here,
the model and code are stimulated the same way and results compared with each
other”

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

5

Tools and Methods for Validation and Verification

ISO26262 Software Unit & Integration Test Requirements

Test Requirements for software testing at architectural und unit level

„The test environment for software integration testing shall correspond as closely as
possible to the target environment. If the software unit testing is not carried out in the
target environment, the differences in the source and object code, and the differences
between the test environment and the target environment, shall be analysed in order to
specify additional tests in the target environment during the subsequent test phases.”
(part 6, chapter 9.4.6)

Test Environment:

• „The testing of the implementation of the software safety requirements shall be

executed on the target hardware.“ (part 6, chapter 11.4.2)
• Hardware-in-the-loop, electronic control unit network environments, vehicles (table16)

Conclusion:
 To optimize the test and minimize the effort, as many of the target specific

potential problems should be indentified in early tests.

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

6

MIL, SIL, PIL and HIL tests are suggested for both software unit test and integration test

(part 6, section 9.4.6 and 10.4.8)

Tools and Methods for Validation and Verification

MIL, SIL, PIL, HIL

− MIL (model in the loop)

− algorithm in a simulation environment, floating point,

− usually open loop stimulation (test vectors)

− SIL (software in the loop)

− algorithm in a programming language, fix point,

− real time or non real time environment

− usually open loop stimulation (test vectors)

− PIL (processor in the loop)

− algorithm executed on target microcontroller

− real time environment

− usually open loop stimulation (test vectors)

− HIL (hardware in the loop)

− algorithm executed on a real time target (µC or RP target)

− real time environment

− closed loop stimulation

Tests for
• Requirements & concepts

(validation)
• logic

• Code verification (syntax,
initialisation, …)

• Arithmetics

• Resource usage
• (Real?) time behaviour
• (real time) OS
• performance

• Integration test
• Full closed loop
• HW interfaces

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

7

Virtual Prototyping – Model-in-the-Loop (MiL) (often called simulation)

Tools and Methods for Validation and Verification

Virtual Prototyping

Plant Model

Fahrzeug

Umwelt

Sensoren Aktuatoren Strecke
Sollwert-
geber

Fahrer

Steuerung/
Regler
Überwachung

Function models • Floating point, non-optimized, …
• Non-real time
• Plant model might be replaced by test vectors
 unit test open loop

• Several function models plant model
needed integration test closed loop

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

8

Virtual Prototyping – Software-in-the-Loop (SiL)

Tools and Methods for Validation and Verification

Virtual Prototyping

C-Code

Plant Model

Fahrzeug

Umwelt

Sensoren Aktuatoren Strecke
Sollwert-
geber

Fahrer

Steuerung/
Regler
Überwachung

• ECU ready C-Code!
• Fix point, optimized, multi-raster, …
• OS/basic SW accesses, …
• Non-real time
• Plant model might be replaced by test vectors
 unit test open loop

• Several function models plant model
needed integration test closed loop

SWCs

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

9

Rapid Prototyping – “external” Bypass System (e.g. extension of an existing system)

Tools and Methods for Validation and Verification

Rapid Prototyping

ECU

Rapid
Prototyping
System

Lambda
Valve/Injector Temperature

Pressure

Function models
or SWCs

I/O System

User PC • Function models or SWCs especially to
identify conceptual error

• Real time
• I/O connection to real world

via ECU & RP-I/O-System

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

10

Target Prototyping – “internal” Bypass System

Tools and Methods for Validation and Verification

Target Prototyping

ECU

ECU
Interface
System

Lambda
Valve/Injector Temperature

Pressure

SWCs

User PC • SWCs especially to identify memory/timing
issues

• Real time
• I/O connection to real world

only via ECU

C-Code

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

11

Hardware-in-the-Loop – real time replacement for the real world

Tools and Methods for Validation and Verification

Hardware-in-the-Loop

ECU

ECU
Interface
System

Lambda
Valve/Injector Temperature

Pressure

SWCs

User PC • Plant model in real time
• All I/O for ECU generated by HIL system

C-Code

DVE Model

Fahrzeug

Umwelt

Sensoren Aktuatoren Strecke
Sollwert-
geber

Fahrer

Steuerung/
Regler
Überwachung

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

12

Processor-in-the-Loop – real time with real I/O

Tools and Methods for Validation and Verification

Processor-in-the-Loop

ECU
Interface
System

SWC

User PC • One SWC especially to identify
memory/timing/µC specific issues

• Real time
• Mainly unit tests as only one SWC used

real time test vectors needed

C-Code

Eval Board

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

13

Tools and Methods for Validation and Verification

MIL, SIL, PIL, HIL for ISO26262 requirements

MIL SIL PIL HIL

Requirements-based test

Interface test

Fault injection test

Resource usage test

Back-to-back comparison

algorithm implementation

VP

RP

OTP

RP

OTP

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

14

Tools and Methods for Validation and Verification

Software bug types – what could possibly go wrong?

sources: http://en.wikipedia.org/wiki/Software_bug#Common_types_of_computer_bugs; http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429

Conceptual error
 code is syntactically correct, but the programmer or designer intended it to do
something else

Teamworking bugs
 Unpropagated updates, Comments out of date or incorrect
Arithmetic bugs
 Division by zero, Arithmetic overflow or underflow, Loss of arithmetic precision due to
rounding or numerically unstable algorithms

Logic bugs
 Infinite loops and infinite recursion, Off by one error, counting one too many or too
few when looping

Syntax bugs
 Use of the wrong operator, …
Multi-threading programming bugs
 Deadlock, Race condition, Concurrency errors in critical sections, mutual exclusions
and other features of concurrent processing. Time-of-check-to-time-of-use (TOCTOU)

Resource bugs
 Null pointer dereference, Using an uninitialized variable, Using an otherwise valid
instruction on the wrong data, Access violations, Resource leaks …

Interfacing bugs
 Incorrect API usage, Incorrect protocol implementation, Incorrect hardware handling
Performance bugs
 too high computational complexity of algorithm, random disk or memory access

V
al

id
at

io
n

V

er
if

ic
at

io
n

O
TP

R
P

-M
IL

V
P

-M
IL

V
P

-S
IL

R
P

-S
IL

http://en.wikipedia.org/wiki/Software_bug
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429
http://www.articlesnatch.com/Article/Software-Bug-And-Their-Common-Types/594429

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

15

Tools and Methods for Validation and Verification

Prototyping Tools as Environment for Validation : example EHOOKs

ISO26262:
9.4.6/10.4.8: „The test environment for software integration testing shall
correspond as closely as possible to the target environment. ..”

The ECU function
can be added to the
ECU code or
executed externally

The output of the
simulated ECU function
can be compared to the
implemented software

• ECU values for reading can be
accessed via standard
measurement

• EHOOKs is a PC software that
allows to patch ECU code to access
ECU values for writing.

• The module under test can either
be executed ECU internally (= on
target) or on external (RP)
hardware

• The outputs of both implemented
ECU module and module under
test can be compared with a
standard measurement tool (INCA)

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

16

• State of the art prototyping methods are well suited to fulfil the

requirements for development and test of safety related software according

to ISO26262

• These methods need to be extended to cover new software architectures

like AUTOSAR

• Following the MIL -> SIL -> PIL -> HIL approach scan satisfy ISO26262

compliant development

• But advanced tools allow to cover more test details already in earlier stages

while reducing the effort and time

• As well as improving the quality of test capabilities, test cases and coverage

Tools and Methods for Validation and Verification

Summary and conclusion

Public | ETAS/STV | June 2011 | © ETAS GmbH 2011. All rights reserved, also regarding any disposal, exploitation, reproduction,

editing, distribution, as well as in the event of applications for industrial property rights.

17

Thank you for your attention!

Tools and Methods for Validation and Verification

