AdaCore Hi-Lite - Verification by

Contract

The GNAT Pro Company

AdaCore

The GNAT Pro Company

Overview

Introduction and Motivation

Presentation of the Hi-Lite Project

Nonstandard Verification

Addressing Shortcomings of Formal Methods

AdaCore

The GNAT Pro Company

Outline

Introduction and Motivation

Ada

The GNAT Pro Company

Formal Methods - |

Apply mathematical techniques to programs

» Find potential bugs (static analysis)
» Prove absence of bugs (program verification)

» Strong guarantees

Examples

» CodePeer, Polyspace (bugfinding)
» SPARK (program verification)

Ada

The GNAT Pro Company

Formal Methods - |l

are often presented as an alternative to testing, inherently superior,
covering all possible cases

In reality ...

Program verification also has drawbacks:

» Complex code (pointers, concurrency) intractable by
(automated) formal methods in the current state of the art

v

Many proposed methods require expert knowledge

v

Specifications can contain errors, cannot be tested

v

Guarantees only as good as the specifications

v

Proving termination is often omitted (partial correctness)

v

Non-functional properties (timing, memory) not considered

As a consequence, applying program verification to an entire
nontrivial program is unrealistic

Ada

The GNAT Pro Company

Current practice: Testing

Testing

» Current practice in verification / validation (DO-178B)

v

Some form of completeness usually desired (MC/DC)

v

Unit testing: from agile development to mainstream

v

Simple to setup

Disadvantages

» Cost: initial setup, maintenance, availability of benchmarks, ...

> Impossibility to cover all cases

DO-178C will allow formal methods to partially replace or
complement testing

Ada

The GNAT Pro Company

Unit Proof - |

Concept

> Apply formal methods and tests on a per-subprogram basis

» If formal methods fail (VC too complex for automated tools),
one can still test the subprogram

» Has been applied at Airbus to avionics software Level A

Ada

The GNAT Pro Company

Unit Proof - [l

Problems

» Expertise: required for writing contracts and carrying proof

v

Duplication: contract not shared between testing and proof

v

Isolation: unit test and unit proof cannot be combined

v

Confusion: not the same semantics for testing and proof

v

Debugging: contracts and proof cannot be executed

AdaCore

The GNAT Pro Company

Outline

Presentation of the Hi-Lite Project

Ada

The GNAT Pro Company

Hi-Lite Partners

Aggmp C WIN RIA
&0
EAQ%EF&;}FH li’t

adlLTRan THALES

Ada

The GNAT Pro Company

Hi-Lite - |

Main objective

» Combination of testing and proof to increase confidence in
software

» Avoid many problems of traditional unit proof by using a
common specification language of tests and proofs

Lightweight approach to formal methods

v

Automated proofs

» Ease transition from all-testing

v

Application to existing projects possible

v

Contrast with SPARK: stronger guarantees, but more
restrictive

Ada

Hi-Lite - Il
The Specification language

» Subprograms have pre- and postconditions (contracts)
» Ada Boolean expressions

» New forms of expressions in Ada 2012

Unit testing

> Possibility to specify testcases next to the subprogram

» A tool GNATtest that generates test stubs that correspond to
test cases

Program proof

> A tool GNATprove that generates verification conditions and
attempts to prove them

Ada

The GNAT Pro Company

New forms of expressions in Ada 2012

> if-expressions:

(if X = 0 then 0 else 1 / X)

> case-expressions:
type Week_Day is
(Mon, Tue, Wed, Thu, Fri, Sat, Sun);
(case X is
when Mon .. Fri => True
when others => False)
» quantified expressions:

(for all I in X’Range => X (I) > 0)
(for some I in X’Range => X (I) > 0)

Ada

The GNAT Pro Company

An Example

A function with pre- and postcondition

function Search (S : String; C
return Natural
with
Pre => 8 /= "",
Post =>

(if Search’Result /=

Character)

0 then

S (Search’Result) = C

and
(for all X in

S’First .. Search’Result -

S (X) /= C));

Ada

The GNAT Pro Company

Test cases
function Sqrt (X : Integer) return Integer
with
Test_Case =>

(Name => "nominal test case",
Mode => Nominal,
Requires => X < 100,
Ensures =>

Sqrt ’Result >= 0 and
Sqrt ’Result < 10),
Test_Case =>

(Name => "robustness test case",
Mode => Robustness,
Requires => X = -1,

Ensures => Sqrt’Result = 0);

Ada

The GNAT Pro Company

The Alfa subset of Ada

Definition
» Includes all features suitable for program verification

» Excludes pointers, concurrency
» Close to the SPARK language, but more permissive

Classification of each subprogram

> Non-Alfa: no restrictions

» Partially in Alfa: specification and contract of the subprogram
are in Alfa, no restriction on the body

» (Entirely) in Alfa: specification, contract and body of the
subprogram are in Alfa, only subprograms at least partially in
Alfa are called

Ada

The GNAT Pro Company

Proofs

Procedure

» For subprograms that are (partially) in Alfa, translate all

» Contracts
» Assertions
» Checks

to verification conditions (VCs)
» Try to prove each VC automatically

» Unproved VCs are reported to the user

Ada

The GNAT Pro Company

Underlying technology

Procedure
» Specs and subprograms in Alfa are translated to an
intermediate language
» A VC generator called Why generates VCs
» VCs are discharged using the Alt-Ergo theorem prover

Ada — ALl —— Why Prog> Why VC — Yes/No
gnat gnat2why why alt-ergo

AdaCore

The GNAT Pro Company

Outline

Nonstandard Verification

Ada

The GNAT Pro Company

Assertions can contain run-time errors themselves

A question ...
What is the meaning of an assertion that raises a run-time error?

Our answer
It's the wrong question: assertions should never do that.

One goal of GNAT prove

Prove the absence of run-time errors in programs and assertions

Ada

The GNAT Pro Company

Assertions generate additional checks

Given the type definitions:

type Array_Range is range 1 .. 10;
type IntArray is array (Array_Range) of Integer;

The following assertion will require an additional check:

for Index in Table’Range loop
-- This wtll generate a (provable) check:
-- J in Table’Range
pragma Assert
(for all J in Table’First .. Index - 1 =>
Table (J) /= Value);

end loop;

Ada

The GNAT Pro Company

Preconditions must be self-guarded

Preconditions

> Are treated as any other assertion;

» But cannot use any context

Wrong:

procedure P (X : IntArray; I : Integer)
with Pre => (X (I) > 0);

Correct:

procedure P (X : IntArray; I : Integer)
with Pre => (I in X’Range and then X (I) > 0);

A precondition must always contain all guards that guarantee
run-time error free execution

Ada

The GNAT Pro Company

Incomplete postconditions

Goal: improve postconditions
Detect situations where the postcondition is correct, but:
» The postcondition is trivial

» Some code does not contribute to the postcondition;

Ada

The GNAT Pro Company

A trivial postcondition

function Max (X, Y : Integer) return Integer
with Post => ((if X < Y then Max’Result = Y)
or (if X >= Y then Max’Result = X));

function Max (X, Y : Integer) return Integer is
begin
if X < Y then
return Y;
else
return X;
end if;
end Max;

» The postcondition is trivial (always true)

» The programmer wanted to join the conditions with "and"”

Ada

The GNAT Pro Company

An incomplete contract

procedure Set_Zero (X, Y : out Integer)
with Post => (X = 0);

procedure Set_Zero (X, Y : out Integer) is
begin

X := 0;

Y := 0;

end Set_Zero;

» The postcondition does not mention all effects;

» The assignment to Y is not used to establish the
postcondition.

Ada

The GNAT Pro Company

Detecting inconsistent and redundant preconditions

procedure P (X, Y : in out Integer)
with Pre => (X <= 0 and X > 0),
with Post => (...);

procedure Q (X, Y : in out Integer)
with Pre => (X > 0 and X > 0),
with Post => (...);

v

In both examples, the programmer made a mistake and wrote
X instead Y in the precondition;

v

The precondition of P is inconsistent, it can never be true;
without any special mechanism, this subprogram will be
proved correct, regardless of the postcondition;

v

The precondition of Q contains a redundant part;

v

We propose to detect such situations in GNAT prove.

Ada

The GNAT Pro Company

Unimplementable contracts

procedure Compute
(X : in Integer;
Y : out Integer) with

Post =>
((if X >= 0 then Y = 1) and
(if X <= 0 then Y = -1));

A (terminating) subprogram with this contract is impossible to
implement

AdaCore

The GNAT Pro Company

Outline

Addressing Shortcomings of Formal Methods

Ada

The GNAT Pro Company

Addressing Shortcomings of Formal Methods

Writing contracts is for experts only?

Ada 2012 expressions:
» common to programs and specifications
> no new language to learn

» no more complicated than programming

Errors in specs
can be found by testing, because contracts are executable

Termination
termination problems can be detected by testing

Ada

The GNAT Pro Company

Hi-Lite and Open-DO

Open-DO

» Address the "Big Freeze" problem
» Open-source tools for safety-critical software development

» Decrease the barrier of entry for the development of
safety-critical software

> Research in the area of safety-critical software development

Hi-Lite is part of the Open-DO Initiative

» Entirely Open Source
» Lower the barrier of application of program verification

» Online resources: www.open-do.org/projects/hi-lite

Ada

The GNAT Pro Company

Conclusion
We have presented Hi-Lite

> a lightweight approach to formal methods

» support for test cases to improve unit testing experience
» gradual replacement or complement of testing by proofs
» application to a legacy code base is possible

Work in progress ...

» Unit testing and test cases are well supported
» GNATprove still in an early prototype phase
» Now starting experiments at EADS Astrium and Thales
Communications
You can participate ...
» in Open-DO

» in Hi-Lite: open source

	Introduction and Motivation
	Presentation of the Hi-Lite Project
	Nonstandard Verification
	Addressing Shortcomings of Formal Methods

