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Formal Methods - |

Apply mathematical techniques to programs

» Find potential bugs (static analysis)
» Prove absence of bugs (program verification)

» Strong guarantees

Examples

» CodePeer, Polyspace (bugfinding)
» SPARK (program verification)
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Formal Methods - |l

are often presented as an alternative to testing, inherently superior,
covering all possible cases

In reality ...

Program verification also has drawbacks:

» Complex code (pointers, concurrency) intractable by
(automated) formal methods in the current state of the art

v

Many proposed methods require expert knowledge

v

Specifications can contain errors, cannot be tested

v

Guarantees only as good as the specifications

v

Proving termination is often omitted (partial correctness)

v

Non-functional properties (timing, memory) not considered

As a consequence, applying program verification to an entire
nontrivial program is unrealistic
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Current practice: Testing

Testing

» Current practice in verification / validation (DO-178B)

v

Some form of completeness usually desired (MC/DC)

v

Unit testing: from agile development to mainstream

v

Simple to setup

Disadvantages

» Cost: initial setup, maintenance, availability of benchmarks, ...

> Impossibility to cover all cases

DO-178C will allow formal methods to partially replace or
complement testing
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Unit Proof - |

Concept

> Apply formal methods and tests on a per-subprogram basis

» If formal methods fail (VC too complex for automated tools),
one can still test the subprogram

» Has been applied at Airbus to avionics software Level A
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Unit Proof - [l

Problems

» Expertise: required for writing contracts and carrying proof

v

Duplication: contract not shared between testing and proof

v

Isolation: unit test and unit proof cannot be combined

v

Confusion: not the same semantics for testing and proof

v

Debugging: contracts and proof cannot be executed
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Hi-Lite - |

Main objective

» Combination of testing and proof to increase confidence in
software

» Avoid many problems of traditional unit proof by using a
common specification language of tests and proofs

Lightweight approach to formal methods

v

Automated proofs

» Ease transition from all-testing

v

Application to existing projects possible

v

Contrast with SPARK: stronger guarantees, but more
restrictive
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Hi-Lite - Il
The Specification language

» Subprograms have pre- and postconditions (contracts)
» Ada Boolean expressions

» New forms of expressions in Ada 2012

Unit testing

> Possibility to specify testcases next to the subprogram

» A tool GNATtest that generates test stubs that correspond to
test cases

Program proof

> A tool GNATprove that generates verification conditions and
attempts to prove them
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New forms of expressions in Ada 2012

> if-expressions:

(if X = 0 then 0 else 1 / X)

> case-expressions:
type Week_Day is
(Mon, Tue, Wed, Thu, Fri, Sat, Sun);
(case X is
when Mon .. Fri => True
when others => False)
» quantified expressions:

(for all I in X’Range => X (I) > 0)
(for some I in X’Range => X (I) > 0)
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An Example

A function with pre- and postcondition

function Search (S : String; C
return Natural
with
Pre => 8 /= "",
Post =>

(if Search’Result /=

Character)

0 then

S (Search’Result) = C

and
(for all X in

S’First .. Search’Result -

S (X) /= C));
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Test cases
function Sqrt (X : Integer) return Integer
with
Test_Case =>

(Name => "nominal test case",
Mode => Nominal,
Requires => X < 100,
Ensures =>

Sqrt ’Result >= 0 and
Sqrt ’Result < 10),
Test_Case =>

(Name => "robustness test case",
Mode => Robustness,
Requires => X = -1,

Ensures => Sqrt’Result = 0);
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The Alfa subset of Ada

Definition
» Includes all features suitable for program verification

» Excludes pointers, concurrency
» Close to the SPARK language, but more permissive

Classification of each subprogram

> Non-Alfa: no restrictions

» Partially in Alfa: specification and contract of the subprogram
are in Alfa, no restriction on the body

» (Entirely) in Alfa: specification, contract and body of the
subprogram are in Alfa, only subprograms at least partially in
Alfa are called
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Proofs

Procedure

» For subprograms that are (partially) in Alfa, translate all

» Contracts
» Assertions
» Checks

to verification conditions (VCs)
» Try to prove each VC automatically

» Unproved VCs are reported to the user
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Underlying technology

Procedure
» Specs and subprograms in Alfa are translated to an
intermediate language
» A VC generator called Why generates VCs
» VCs are discharged using the Alt-Ergo theorem prover

Ada — ALl —— Why Prog> Why VC — Yes/No
gnat  gnat2why why alt-ergo
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Nonstandard Verification
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Assertions can contain run-time errors themselves

A question ...
What is the meaning of an assertion that raises a run-time error?

Our answer
It's the wrong question: assertions should never do that.

One goal of GNAT prove

Prove the absence of run-time errors in programs and assertions
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Assertions generate additional checks

Given the type definitions:

type Array_Range is range 1 .. 10;
type IntArray is array (Array_Range) of Integer;

The following assertion will require an additional check:

for Index in Table’Range loop
-- This wtll generate a (provable) check:
-- J in Table’Range
pragma Assert
(for all J in Table’First .. Index - 1 =>
Table (J) /= Value);

end loop;
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Preconditions must be self-guarded

Preconditions

> Are treated as any other assertion;

» But cannot use any context

Wrong:

procedure P (X : IntArray; I : Integer)
with Pre => (X (I) > 0);

Correct:

procedure P (X : IntArray; I : Integer)
with Pre => (I in X’Range and then X (I) > 0);

A precondition must always contain all guards that guarantee
run-time error free execution
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Incomplete postconditions

Goal: improve postconditions
Detect situations where the postcondition is correct, but:
» The postcondition is trivial

» Some code does not contribute to the postcondition;
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A trivial postcondition

function Max (X, Y : Integer) return Integer
with Post => ((if X < Y then Max’Result = Y)
or (if X >= Y then Max’Result = X));

function Max (X, Y : Integer) return Integer is
begin
if X < Y then
return Y;
else
return X;
end if;
end Max;

» The postcondition is trivial (always true)

» The programmer wanted to join the conditions with "and"”
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An incomplete contract

procedure Set_Zero (X, Y : out Integer)
with Post => (X = 0);

procedure Set_Zero (X, Y : out Integer) is
begin

X := 0;

Y := 0;

end Set_Zero;

» The postcondition does not mention all effects;

» The assignment to Y is not used to establish the
postcondition.
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Detecting inconsistent and redundant preconditions

procedure P (X, Y : in out Integer)
with Pre => (X <= 0 and X > 0),
with Post => (...);

procedure Q (X, Y : in out Integer)
with Pre => (X > 0 and X > 0),
with Post => (...);

v

In both examples, the programmer made a mistake and wrote
X instead Y in the precondition;

v

The precondition of P is inconsistent, it can never be true;
without any special mechanism, this subprogram will be
proved correct, regardless of the postcondition;

v

The precondition of Q contains a redundant part;

v

We propose to detect such situations in GNAT prove.
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Unimplementable contracts

procedure Compute
(X : in Integer;
Y : out Integer) with

Post =>
((if X >= 0 then Y = 1) and
(if X <= 0 then Y = -1));

A (terminating) subprogram with this contract is impossible to
implement
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Addressing Shortcomings of Formal Methods

Writing contracts is for experts only?

Ada 2012 expressions:
» common to programs and specifications
> no new language to learn

» no more complicated than programming

Errors in specs
can be found by testing, because contracts are executable

Termination
termination problems can be detected by testing
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Hi-Lite and Open-DO

Open-DO

» Address the "Big Freeze" problem
» Open-source tools for safety-critical software development

» Decrease the barrier of entry for the development of
safety-critical software

> Research in the area of safety-critical software development

Hi-Lite is part of the Open-DO Initiative

» Entirely Open Source
» Lower the barrier of application of program verification

» Online resources: www.open-do.org/projects/hi-lite
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Conclusion
We have presented Hi-Lite

> a lightweight approach to formal methods

» support for test cases to improve unit testing experience
» gradual replacement or complement of testing by proofs
» application to a legacy code base is possible

Work in progress ...

» Unit testing and test cases are well supported
» GNATprove still in an early prototype phase
» Now starting experiments at EADS Astrium and Thales
Communications
You can participate ...
» in Open-DO

» in Hi-Lite: open source
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