
Hi-Lite - Verification by

Contract

Jérôme Guitton, Johannes Kanig,
Yannick Moy (AdaCore)

Ada Deutschland - June 30th, 2011



Overview

Introduction and Motivation

Presentation of the Hi-Lite Project

Nonstandard Verification

Addressing Shortcomings of Formal Methods



Outline

Introduction and Motivation

Presentation of the Hi-Lite Project

Nonstandard Verification

Addressing Shortcomings of Formal Methods



Formal Methods - I

Apply mathematical techniques to programs

I Find potential bugs (static analysis)

I Prove absence of bugs (program verification)

I Strong guarantees

Examples

I CodePeer, Polyspace (bugfinding)

I SPARK (program verification)



Formal Methods - II
are often presented as an alternative to testing, inherently superior,
covering all possible cases

In reality ...

Program verification also has drawbacks:

I Complex code (pointers, concurrency) intractable by
(automated) formal methods in the current state of the art

I Many proposed methods require expert knowledge

I Specifications can contain errors, cannot be tested

I Guarantees only as good as the specifications

I Proving termination is often omitted (partial correctness)

I Non-functional properties (timing, memory) not considered

As a consequence, applying program verification to an entire
nontrivial program is unrealistic



Current practice: Testing

Testing

I Current practice in verification / validation (DO-178B)

I Some form of completeness usually desired (MC/DC)

I Unit testing: from agile development to mainstream

I Simple to setup

Disadvantages

I Cost: initial setup, maintenance, availability of benchmarks, ...

I Impossibility to cover all cases

DO-178C will allow formal methods to partially replace or
complement testing



Unit Proof - I

Concept

I Apply formal methods and tests on a per-subprogram basis

I If formal methods fail (VC too complex for automated tools),
one can still test the subprogram

I Has been applied at Airbus to avionics software Level A



Unit Proof - II

Problems

I Expertise: required for writing contracts and carrying proof

I Duplication: contract not shared between testing and proof

I Isolation: unit test and unit proof cannot be combined

I Confusion: not the same semantics for testing and proof

I Debugging: contracts and proof cannot be executed



Outline

Introduction and Motivation

Presentation of the Hi-Lite Project

Nonstandard Verification

Addressing Shortcomings of Formal Methods



Hi-Lite Partners



Hi-Lite - I

Main objective

I Combination of testing and proof to increase confidence in
software

I Avoid many problems of traditional unit proof by using a
common specification language of tests and proofs

Lightweight approach to formal methods

I Automated proofs

I Ease transition from all-testing

I Application to existing projects possible

I Contrast with SPARK: stronger guarantees, but more
restrictive



Hi-Lite - II

The Specification language

I Subprograms have pre- and postconditions (contracts)

I Ada Boolean expressions

I New forms of expressions in Ada 2012

Unit testing

I Possibility to specify testcases next to the subprogram

I A tool GNATtest that generates test stubs that correspond to
test cases

Program proof

I A tool GNATprove that generates verification conditions and
attempts to prove them



New forms of expressions in Ada 2012

I if-expressions:

(if X = 0 then 0 else 1 / X)

I case-expressions:

type Week_Day is

(Mon , Tue , Wed , Thu , Fri , Sat , Sun);

...

(case X is

when Mon .. Fri => True

when others => False)

I quantified expressions:

(for all I in X’Range => X (I) > 0)

(for some I in X’Range => X (I) > 0)



An Example

A function with pre- and postcondition

function Search (S : String; C : Character)

return Natural

with

Pre => S /= "",

Post =>

(if Search ’Result /= 0 then

S (Search ’Result) = C

and

(for all X in

S’First .. Search ’Result - 1 =>

S (X) /= C));



Test cases

function Sqrt (X : Integer) return Integer

with

Test_Case =>

(Name => "nominal test case",

Mode => Nominal ,

Requires => X < 100,

Ensures =>

Sqrt ’Result >= 0 and

Sqrt ’Result < 10),

Test_Case =>

(Name => "robustness test case",

Mode => Robustness ,

Requires => X = -1,

Ensures => Sqrt ’Result = 0);



The Alfa subset of Ada

Definition

I Includes all features suitable for program verification

I Excludes pointers, concurrency

I Close to the SPARK language, but more permissive

Classification of each subprogram

I Non-Alfa: no restrictions

I Partially in Alfa: specification and contract of the subprogram
are in Alfa, no restriction on the body

I (Entirely) in Alfa: specification, contract and body of the
subprogram are in Alfa, only subprograms at least partially in
Alfa are called



Proofs

Procedure

I For subprograms that are (partially) in Alfa, translate all
I Contracts
I Assertions
I Checks

to verification conditions (VCs)

I Try to prove each VC automatically

I Unproved VCs are reported to the user



Underlying technology

Procedure

I Specs and subprograms in Alfa are translated to an
intermediate language

I A VC generator called Why generates VCs

I VCs are discharged using the Alt-Ergo theorem prover

Ada ALI Why Prog Why VC Yes/No
gnat gnat2why why alt-ergo



Outline

Introduction and Motivation

Presentation of the Hi-Lite Project

Nonstandard Verification

Addressing Shortcomings of Formal Methods



Assertions can contain run-time errors themselves

A question ...

What is the meaning of an assertion that raises a run-time error?

Our answer
It’s the wrong question: assertions should never do that.

One goal of GNATprove

Prove the absence of run-time errors in programs and assertions



Assertions generate additional checks

Given the type definitions:

type Array_Range is range 1 .. 10;

type IntArray is array (Array_Range) of Integer;

The following assertion will require an additional check:

for Index in Table ’Range loop

-- This will generate a (provable) check:

-- J in Table ’Range

pragma Assert

(for all J in Table ’First .. Index - 1 =>

Table (J) /= Value);

...

end loop;



Preconditions must be self-guarded

Preconditions

I Are treated as any other assertion;

I But cannot use any context

Wrong:

procedure P (X : IntArray; I : Integer)

with Pre => (X (I) > 0);

Correct:

procedure P (X : IntArray; I : Integer)

with Pre => (I in X’Range and then X (I) > 0);

A precondition must always contain all guards that guarantee
run-time error free execution



Incomplete postconditions

Goal: improve postconditions

Detect situations where the postcondition is correct, but:

I The postcondition is trivial

I Some code does not contribute to the postcondition;



A trivial postcondition

function Max (X, Y : Integer) return Integer

with Post => ((if X < Y then Max ’Result = Y)

or (if X >= Y then Max ’Result = X));

function Max (X, Y : Integer) return Integer is

begin

if X < Y then

return Y;

else

return X;

end if;

end Max;

I The postcondition is trivial (always true)

I The programmer wanted to join the conditions with ”and”



An incomplete contract

procedure Set_Zero (X, Y : out Integer)

with Post => (X = 0);

procedure Set_Zero (X, Y : out Integer) is

begin

X := 0;

Y := 0;

end Set_Zero;

I The postcondition does not mention all effects;

I The assignment to Y is not used to establish the
postcondition.



Detecting inconsistent and redundant preconditions

procedure P (X, Y : in out Integer)

with Pre => (X <= 0 and X > 0),

with Post => (...);

procedure Q (X, Y : in out Integer)

with Pre => (X > 0 and X > 0),

with Post => (...);

I In both examples, the programmer made a mistake and wrote
X instead Y in the precondition;

I The precondition of P is inconsistent, it can never be true;
without any special mechanism, this subprogram will be
proved correct, regardless of the postcondition;

I The precondition of Q contains a redundant part;

I We propose to detect such situations in GNATprove.



Unimplementable contracts

procedure Compute

(X : in Integer;

Y : out Integer) with

Post =>

((if X >= 0 then Y = 1) and

(if X <= 0 then Y = -1));

A (terminating) subprogram with this contract is impossible to
implement



Outline

Introduction and Motivation

Presentation of the Hi-Lite Project

Nonstandard Verification

Addressing Shortcomings of Formal Methods



Addressing Shortcomings of Formal Methods

Writing contracts is for experts only?

Ada 2012 expressions:

I common to programs and specifications

I no new language to learn

I no more complicated than programming

Errors in specs

can be found by testing, because contracts are executable

Termination
termination problems can be detected by testing



Hi-Lite and Open-DO

Open-DO

I Address the ”Big Freeze” problem

I Open-source tools for safety-critical software development

I Decrease the barrier of entry for the development of
safety-critical software

I Research in the area of safety-critical software development

Hi-Lite is part of the Open-DO Initiative

I Entirely Open Source

I Lower the barrier of application of program verification

I Online resources: www.open-do.org/projects/hi-lite



Conclusion

We have presented Hi-Lite

I a lightweight approach to formal methods

I support for test cases to improve unit testing experience

I gradual replacement or complement of testing by proofs

I application to a legacy code base is possible

Work in progress ...

I Unit testing and test cases are well supported

I GNATprove still in an early prototype phase

I Now starting experiments at EADS Astrium and Thales
Communications

You can participate ...

I in Open-DO

I in Hi-Lite: open source


	Introduction and Motivation
	Presentation of the Hi-Lite Project
	Nonstandard Verification
	Addressing Shortcomings of Formal Methods

