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Dependable Software and Siemens Products

All Siemens Divisions develop 
and sell products that perform 
mission-critical operations. 

Most of these products contain an 
ever increasing software part.

Dependability is decisive for our 
commercial success. 

Dependability yields higher 
confidence and acceptance, and 
is pre-condition to market access. 

Following engineering standards 
gives evidence of a product‘s 
quality and trustworthiness.

Dependability relies on an 
integral management & 
engineering approach.

Dependability of a computing system is the ability to 
deliver services that can justifiably be trusted.

Ref. : A. Avizieniz, J.-C. Laprie, B. Randell: Fundamental Concepts of Dependability
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Engineering of high-quality software
Test levels – example V model
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Engineering of high-quality software
Test levels, Verification & Validation – A closer View
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Formal Verification and Related Terms

•Software Verification, Software Safety Validation (IEC61508)
Verification & Validation, Static Analysis& Dynamic Testing

• See http://en.wikipedia.org/wiki/Formal_verification :
• Validation: "Are we building the right product?", 

i.e., does the product do what the user/the application really requires? 
• Verification: "Are we building the product right?", 

i.e., does the product conform to the specifications? 
• The verification process consists of static and dynamic parts.

E.g., for a software product one can inspect the source code (static) and run against 
specific test cases (dynamic). Validation usually can only be done dynamically.

• Formal Method (IEC61508)
Formal Specification 

• Formal Proof (IEC61508)
Formal Verification, Model Checking/Theorem Proving

• See http://en.wikipedia.org/wiki/Formal :
formal methods in computer science, including: 
formal specification describes what a system should do 
formal verification proves correctness of a system 
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Embedding Formal Verification into 
Software Development Life-Cycle 

Requirements Informal Design 
/ Code

Software under Test

certif
ied

Product

ce
rti

fie
d

ce
rti

fie
d

Test Sequences

1. rcv[pv][0][0][nok]
2. resume
3. send[1][0][1][0]
4. rcv[pv][0][1][ok]
5. resume
6. send[1][0][1][1]
...

Test Sequences

1. rcv[pv][0][0][nok]
2. resume
3. send[1][0][1][0]
4. rcv[pv][0][1][ok]
5. resume
6. send[1][0][1][1]
...

Formal Model Checker

Formal Model

formalize
extract

Formal
Properties

derive

3  await slave ack

4 slave ack check

2  message prepare

5 message prepare

6 await slave ack

if
host CRC
or slave timeout
or slave CRC/cons.Nr.
or not operator ack.
then
store faults,
x=x+1, use FV

if ack. received
   with cons.Nr.=0
   and not host
timeout
then
restart host- timer

7 slave ack check

if ack. received with old cons.Nr.
   and not host timeout

if message
prepared
then send

10 slave ack check

9 await slave ack

8 message prepare

if host timeout
then
store fault,
x=x+1, use FV,
restart host- timer

if not faults and operator ack.
then  
reset stored faults,
old cons.Nr. = x,  x=x+1,
    if slave FV activated or ipar
    then use FV
    else use PV

if host CRC or host cons.Nr. or slave timeout or slave CRC/cons.Nr.
then store faults,  x=x+1, use FV

if host timeout
then
x=x+1, use FV

if message prepared
then send

if
host CRC
or slave timeout
or slave CRC/cons.Nr.
then
store faults,
x=x+1, use FV,
restart host- timer

if host timeout
then
store fault,
x=x+1, use FV,
restart host- timer

if message prepared
then  send

if not stored faults before system start
then x=0, use FV

1  system start

if ack. received not with old cons.Nr
   and not host timeout
then   restart host- timer

if ack. received
   with cons.Nr.=x
   and not host timeout
then  restart host- timer

if stored faults before/during system start
then  x=1, use FV

if not faults
then
old cons.Nr. = x, x=x+1,
    if slave FV activated or
ipar
    then use FV
    else use PV

if not faults
then
x=x
    if slave FV activated or ipar
    then use FV
    else use PV

if wait delay time
then  store fault, restart host- timer

11 wait delay time

  parametrization ok
  configuration ok
  initial values = 0
  restart host-timer

cont. refine

derive
add.
tests

Verification 
Results

Beware of bugs 
in the above code; 

I have only proved it 
correct, not tried it.

[Donald E. Knuth, 1977]
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Model 
Specification  

Correctness 
Requirement

Syntax 
Checker

Exhaustive 
Verification

Probabilistic 
Verification  

Output 
(verification 

result) 

Fail trace 
(if exists)

Settings

LTL, Omega-
regular 

automata

Sequence of 
total model state and
subsequent changes

in model

SPIN (Bell Labs, G. Holzmann):
Characteristics of method: 
1) exhaustive verification
2) space compression
3) probabilistic verification (hashing)

Model in PROMELA (C-like language, 
CSP-based) is automatically translated into 
the extended FSMs. 
These FSMs are verified to be correct 
according to correctness requirements. 
Correctness requirements are presented in 
Linear Temporal Logic (LTL)

SPIN-based
technologies are used: 
•Bell-Labs (network 
switches, OS Plan 9)
•NASA (Cassini
mission at Saturn, 
Deep Space 1)
•Siemens CT

Formal Model Verification – SPIN tool 

SPIN website 
http://spinroot.com/spin/whatispin.html
Wikipedia
http://en.wikipedia.org/wiki/SPIN_model_checker
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Example A 
System Structure

System

Peer Device
Object under 

Analysis

Customized Line Discipline
Serial Line: 57600 bps
Error Protection:
•Serial Line: Parity Bit
•Protocol Level: BCC for data in messages
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Example A
Safety Property (1)

Safety Property: Any order of STX_DATA and DLE messages will be 
correctly received and Receiver achieves TFirstChar state after TDLE2 
state. 
Modeling Solution: Sender generates valid messages STX_DATA and 
DLE in all possible sequences. 

Property Parts:
#define a (ReceiveState==TDLE2)
#define b (ReceiveState==TFirstChar)

Safety Property for Model Verification 
in Linear Temporal Logic:
[] (<> a -> <> b)

OK:
Property Valid

STX_DATA STX_DATA STX_DATADLE ? DLE ?

TFirstChar

TLength

TData

TLastChar

TDLE2
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Example A 
Safety Property (2)

Safety Property: Any order of STX_DATA and DLE messages will be 
correctly received and Receiver achieves TFirstChar state after TDLE2 
state if the noise char comes suddenly. 
Modeling Solution: Sender generates valid messages STX_DATA and 
DLE in all possible sequences. We allow receiving of noisy char.

Property Parts:
#define a (ReceiveState==TDLE2)
#define b (ReceiveState==TFirstChar)

Safety Property for Model Verification 
in Linear Temporal Logic:
[] (<> a -> <> b)

Error: 
Property Invalid

STX_DATA STX_DATA STX_DATADLE ? DLE x

TFirstChar

TLength

TData

TLastChar

TDLE2
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Example A 
Error Analysis for Property (2) : Source Code

switch (theDriverData->ReceiveState) {
case TFirstChar:

switch (theChar) {
(…)
case TDRVDLE: 

theDriverData->ReceiveState = TDLE2; break;
}

(…)
case TDLE2:

if(theChar == '?' || theChar == TDRVENQ)
theEvent = TDLEReceived;

if(atomic_read(&theDriverData->WabtCounter) == 50) {
atomic_set(&theDriverData->WabtCounter, 0);
theDriverData->ReceiveState = TFirstChar;

}
break;
(…)

Error: 
Property Invalid

Explanation:
SPIN shows that DRV 
could be blocked if 
noisy (incorrect) char 
came after TDRVDLE. 

NOTE: the real driver 
will wait 50 timeouts 
(~5-20 sec) before it 
starts receiving of 
next telegram         
(e.g. STX_DATA)

TFirstChar

TLength

TData

TLastChar

TDLE2
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Example A 
FMV Results for the Driver

Operational threats identified by SPIN:
Long delay identified if 1 noise char comes
Data loss within telegram receiving found

Model-building review:
Performance bottleneck could create high interrupts latency
Wrong API-version calls 
“Magic Constants” used in code
“Dead Code” identified
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Summary (1) 
Objects and Focus Setting  

Fault Types:
Deadlock/Livelock
Endangered Safety
Integrity violation
Correctness violation 
Non-expected communication 

order
Race Conditions 
…

Robustness Aspects:
Standard operation
Unpredictable rare impact
“Aggressive/Noisy Environment”

Objects under Analysis:
Protocols and Interfaces
(especially under construction)
Interacting components 
(e.g. new architecture or critical
mechanism) 
Data access and control logic in
parallel and distributed system

Additional Focus set on:
System Initialization 
Restart of Components
Communication Delays 
and Faults 
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Dos & Don’ts

•Improve verification capabilities in 
early phases by introducing formal 
techniques.
•Increase precision in specifications. 
Apply formal techniques at design and 
fight ambiguities. 
•Promote formally motivated checks
into standard peer reviews. 
•Focus formal techniques on 
architectural hotspots: complex, 
critical, risky, central parts
•Exploit formal results for test case 
definition: use failure traces to focus 
tests on design flaws.

•Don’t believe in wonders. Formal 
verification is not cheap and needs 
invests in early phases.
•Don’t act without concept. Tools need 
evaluation, and competence needs to be 
built. 
•Don’t apply formal techniques as rescue 
belt. It’s not to patch ambiguous results 
from less mature processes. 
•Don’t believe you will not need to test 
your software any more. Formal 
verification does not replace testing 
phases.
•Don’t believe your software is 
completely verified. You only proved that 
a model fulfills certain properties. 
That’s it – no more, no less.    

Don’t split theory and practice.
Closely align work of formal teams and safety/development teams.
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The Formal Hype Cycle

Visibility

Maturity

Formal Verification 
of HW ASICs

Autom. Verif. of 
full-scale systems

Formal std. design 
(SaferUML)

Seamless integration 
into System Dev.

Productive use in 
Avionics, Aeronautics

First experiences in 
civil industrial sectors 

Unified formal 
design standard

Various 
specialized

comm. & pd. tools 
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Challenges for Formal Model Verification

Challenges
Decrease modeling efforts 
Increase usability, reduce qualification degree needed
Integration with tools for software development
Traceability from modeling phase to testing phase
Automated properties and models extraction 
from heterogeneous input material
Again coverage and completeness issues 
“How much will be sufficient?”
…

Model Checking gains importance:

“The behavior of even nonbuggy
distributed applications can easily
defy our human reasoning skills.”

Logic Verification of ANSI C code with SPIN
Gerard J. Holzmann
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Summary (2)
Reasons for Formal Model Verification

Standards recommend formal methods and proofs
e.g. IEC61508 : SIL2/3/4 - for design, verification, safety validation.
Formal methods emerge at the industry sector
easier to use tooling (Open Source, Tool Vendors), best practices 
(space/military, avionics, transportation/automotive, Microsoft).
Formal methods improve precision within development, 
capturing and ensuring functional and non-functional properties.
Early correctness proof of design concepts prevents design faults to 
propagate into development, test and operation phase.
Byzantine failures with hard to identify root-causes often are the 
consequence of weakly defined or misunderstood requirements.
Environmental impact and sporadic influences which are hard to test 
can be incorporated into formal models.
Stronger evidence of safety-related claims; amends test results and
improves acceptance by certification authorities.
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Conclusions

•Increasing complexity and importance of software
More and more safety-relevant functions, which nowadays might be executed manually by
human, will be realized in software and taken over automatically by the technical system.

•Traditionally software plays a subordinate role
In systems engineering and also in relevant standards the current perspective on software 
is that of an subordinate element. This is expected to change with the growing 
pervasiveness of software especially in safety-relevant development.

•Formal verification in practice applied to selected software parts
In the current practice formal verification is applied to verify selected system aspects. It 
already proved usefulness and applicability.

•Cost and complexity of formal techniques are further high
Up to now formal verification is not an easy-to-use technique. At this time it is not seen to 
enable a complete software/system verification.

•Formal Verification does not/will never replace systematic testing
Formal verification adds precision to the traditional verification process. It extends, but 
does not replace rigorous testing. Size limitations and abstractions of models through 
formal verification are to be carefully verified in reality.
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Thank you for your attention.

Do you have some questions ?
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Backup
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Fundamental Concepts of Dependability
(A. Avizieniz, J.-C. Laprie, B. Randell)

Concepts of Dependability developed by 
A. Avizieniz, J.-C. Laprie, B. Randell
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Definitions: Dependability Attributes

Dependability is an integrative concept that encompasses the following 
system attributes: 

Availability: readiness for correct service 
Reliability: continuity of correct service
Safety: absence of catastrophic consequences on the user(s) and the 
environment
Confidentiality: absence of unauthorized disclosure of information
Integrity: absence of improper system state alterations
Maintainability: ability to undergo repairs and modifications

Compound attributes:
Survivability: system capability to resist a hostile environment so that it can 
fulfill its mission (MIL-STD-721, DOD-D-5000.3)
Security: Dependability with respect to the prevention of unauthorized access 
and/or handling of information (Laprie, 1992)

* RAM / RAMS: acronyms for reliability, availability, maintainability, and safety
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IEC61508-3: Formal Methods

Formal methods are a specification technique. 
Formal methods (see IEC61508-7, C2.4) are for example, CCS, CSP, HOL, LOTOS, OBJ, 

temporal logic, VDM and Z. 
Formal methods are recommended (R SIL2/3, HR SIL4) for 
• 7.2/Table A.1: 

Software safety requirements specification
• 7.4.3/Table A.2: 

Software design and development: software architecture design
• 7.4.5/Table A.4: 

Software design and development: detailed design
• 7.7/Table A.7/Table B5

Modeling in the context of software safety validation
Sometimes mixed up with semi-formal methods e.g. finite state machines (FSM)
• semi-formal methods (table B.7): 

Logic/function block diagrams, sequence diagrams, data flow diagrams, finite state 
machines/state transition diagrams, e.a.
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IEC61508-7, C2.4: Formal Methods (ii)

•Focus: Logic/HW
• HOL – Higher Order Logic for HW verification
• Temporal logic – Formal demonstration of safety and operational requirements

•Focus: Sequential processes
• OBJ – Algebraic specification of operations on abstract data types (ADT, similar to 

ADA packages).
• Z – Specification language notation for sequential systems
• VDM – Vienna Development Method (VDM++ concur. extension)

•Focus: Communicating concurrent processes
• LOTOS, extends CCS – Calculus of Communicating Systems
• CSP – Communicating Sequential Processes

•Other semi-formal techniques (see B.2.3.2) 
• Finite state machines/state transition diagrams for control structures
• Petri nets (graph theory) for concurrent, asynchronous control flow; extension: 

time concept, data/information flow
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IEC61508-3: Formal Proofs

Formal proofs are recommended (R SIL2/3, HR SIL4) for 
• IEC61508-3/7.9/Table A.9:  Software verification

Formal proofs are a static means for software verification
NOTE 3 – In the early phases of the software safety lifecycle verification is static, 

for example inspection, review, formal proof. When code is produced dynamic testing 
becomes possible. It is the combination of both types of information that is required for 
verification. 

For example code verification of a software module by static means includes 
such techniques as software inspections, walk-throughs, static analysis, formal proof. Code 
verification by dynamic means includes functional testing, white-box testing, statistical 
testing.

It is the combination of both types of evidence that provides assurance that each 
software module satisfies its associated specification.

Sometimes mixed up with static analysis e.g. symbolic execution:

• Static analysis (table A.9, table B.8): e.g. Walk-through/design reviews, control flow / 
data flow analysis, or symbolic execution, e.a.
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Outline of Formal Model Verification 

Main Steps:
Objects under Analysis
identification in software project 

Correctness properties definition 
for Objects under Analysis

Creation of model for 
Objects in PROMELA

Model verification by SPIN and 
findings analysis  

Report preparation on 
verification results 

dx+2dy=a
7dx-8dy=b

….

Differential equations

Target Software

1. a[i]=a[k]<a[i] ... 
    2. k+=idxA;
    3. merge(a,t);
    4. t[k] = ...

Sorting Algorithm

if :: atomic { 
qWriteIrp?[writeReq] ->    
qWriteIrp?writeReq;

  } qDevTX!true ; 
qWriteIrpBack!writeOk;
  :: else -> skip; ...

Critical Algorithm – Control Logic

solved

proved

verified

Further promising actions:
• Automate procedure of model creation from C/C++ sources
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SPIN model checker (ii)

Wikipedia http://en.wikipedia.org/wiki/SPIN_model_checker
SPIN is a tool for software model checking. It was written by Gerard J. Holzmann and 
others, and has evolved for more than 15 years. SPIN is an automata-based model 
checker. Systems to be verified are described in Promela (Process Meta Language), which 
supports modeling of asynchronous distributed algorithms as non-deterministic automata. 
Properties to be verified are expressed as Linear Temporal Logic (LTL) formulas, which are 
negated and then converted into Büchi automata as part of the model-checking algorithm. 
In addition to model-checking, SPIN can also operate as a simulator, following one possible 
execution path through the system and presenting the resulting execution trace to the user.
Since 1995, (approximately) annual SPIN workshops have been held for SPIN users, 
researchers, and those generally interested in model checking. In 2001, the Association for 
Computing Machinery awarded SPIN its System Software Award.
Holzmann, G. J., The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004. ISBN 0-321-22862-6. 
SPIN website http://spinroot.com/spin/whatispin.html
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Snapshot of SPIN Verification Screen 
Snapshot of SPIN Verification Screen 
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SPIN model checker (iii) – References 

Wikipedia http://en.wikipedia.org/wiki/SPIN_model_checker
SPIN Website http://spinroot.com/spin/whatispin.html
An overview paper of Spin, with verification examples, is: 

The Model Checker Spin,
IEEE Trans. on Software Engineering,
Vol. 23, No. 5, May 1997, pp. 279-295.
(PDF)

The automata-theoretic foundation for Spin: 
An automata-theoretic approach to automatic program verification,
by Moshe Y. Vardi, and Pierre Wolper,
Proc. First IEEE Symp. on Logic in Computer Science,
1986, pp. 322-331.
(PDF)
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Linear Temporal Logic : SYNTAX

LTL - Linear Temporal Logic
Best to specify safety and correctness properties
See also http://en.wikipedia.org/wiki/Linear_Temporal_Logic

SYNTAX
Grammar: ltl ::= opd | ( ltl ) | ltl binop ltl | unop ltl

Unary Operators (unop): 
[] (the temporal operator always), 
<> (the temporal operator eventually), 
! (the boolean operator for negation) 

Binary Operators (binop):
U (the temporal operator strong until) 
V (the dual of U): (p V q) == !(!p U !q) 
&& (the boolean operator for logical and) 
|| (the boolean operator for logical or) 
-> (the boolean operator for logical implication) 
<-> (the boolean operator for logical equivalence) 

Operands (opd): Predefined: true, false
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Linear Temporal Logic (ii)

Extension of classical logic (∧, ∨, ¬, ⇒, ∀, ∃)
works over an (infinite) sequence of states

New operators:
○ next time
○ ϕ ϕ holds at time t + 1

◊ eventually
◊ ϕ ϕ holds at some time t + n

□ always
□ ϕ ϕ holds for all future times t + n

Uuntil
ϕ U ψ ϕ holds for all future times until the time where ψ holds

∩ release
ϕ ∩ ψ either ϕ holds forever, or until ϕ and ψ holds at the same time


