
www.adacore.com

Ada 2005 for Real-Time, Embedded and
High-Integrity Systems

Ada Deutschland Software Workshop 2008
Karlsruhe, 24th January, 2008

Jose F. Ruiz <ruiz@adacore.com>
Senior Software Engineer

Slide 2

Outline of the presentation

• Ada
– For embedded high-integrity real-time systems

• Ada 2005
– The Ravenscar tasking profile

– Flexible real-time scheduling algorithms

– CPU clocks and timers

– Timing events

– Flexible object-oriented features

Slide 3

Ada for High-Integrity Applications

• Ada promotes safety / reliability
– Readability
– Compile-time checking (strong typing)
– Encapsulation and data abstraction
– Deterministic language semantics (ISO Standard)

– Implementation must document effect where language semantics offers flexibility

• Support modern software engineering techniques
– High abstraction level constructions integrated within the language

– tasking, OOP, templates, modularity, data abstraction and encapsulation, …

– General design philosophy promotes sound software engineering

• Specific features
– Real-Time and High-Integrity Annexes
– Language subsets

• Guidelines documents
– Guide for Ada in High-Integrity Systems (an ISO Technical Report)
– Guide for Ada Ravenscar Profile in High-Integrity Systems

Slide 4

Ada for Real-Time Systems

• Concurrency
– Within the language

– Avoid error-prone low-level constructions

– Well-defined semantics for scheduling

– Safe / efficient mutual exclusion
– Avoidance of unbounded priority inversion

– Ravenscar profile
– Restricted set of tasking features amenable to schedulability analysis and certification

• Asynchrony
– Asynchronous events / event handlers

– Connection with interrupts

– Asynchronous Transfer of Control
– Timeout

– Task termination

– Preemptive task abortion

– Asynchronous task control

• Time
– Support for high-resolution monotonic clock and absolute and relative delays

Slide 5

Ada for Embedded Systems

• Specific Annex for low-level support
– Access to hardware-specific features

• Access to machine operations
– Assembly and intrinsic subprograms

• Representation support
– Address, alignment, size, layout

• Shared variable control
– Atomic, volatile,…

• Storage management
– Specific storage pools

– User-defined managers that may be placed in specific memory regions, and that
may be suitable for real-time systems because they can be made predictable

Slide 6

What is N
ew in Ada 2005?
• The Ravenscar profile

• Task elaboration and finalization
– Partition elaboration policy for high-integrity systems (atomic elaboration)
– Task termination procedures

• Restriction pragmas
– No_Relative_Delay, Max_Entry_Queue_Length,…

• Time and clocks
– Timing events
– Execution time clocks
– Execution time budgets

– for task groups also

• Scheduling
– New dispatching policies

– Non-preemptive, round robin, Earliest Deadline First (EDF)

– Dynamic ceiling priorities
– Priority Specific dispatching

• Object-Oriented Programming
– Interfaces
– Object notation

Slide 7

The Ravenscar Profile

• A subset of the Ada tasking model

• Defined to meet safety-critical real-time
requirements
– Determinism

– Schedulability analysis

– Memory-boundedness

– Execution efficiency and small footprint

– Suitability for certification

• State-of-the-art concurrency constructs
– Adequate for most types of real-time software

Slide 8

The Ravenscar Profile (II)

• Set of tasks / interrupts to be analyzed is fixed and has
static properties
– Tasks, protected objects only at library level

– No dynamic allocation of tasks or protected objects

– Each task is infinite loop
– single “triggering” action (delay or event)‏

• Memory usage is deterministic
– Tasks descriptors and stacks are statically created at compile time

– No implicit heap usage

• Program execution is deterministic
– Simple protected objects

– at most one entry, at most one caller queued

– Task creation and activation is very simple and deterministic
– Tasks created at initialization, then activated and executed according to their

priority

Slide 9

The Ravenscar Tasking Model

• A single processor

• A fixed number of tasks

• Single invocation event per task
– Time-triggered or event-triggered

• Task interaction using shared data
– Mutual exclusive access

• Remove constructions difficult to analyse
– No asynchronous control, no abort, ...

Most violations detected at compile time

Slide 10

The Ravenscar Tasking Model (II)

• Scheduling policy
– Preemptive fixed-priorities

• Locking policy
– Ceiling priority for bounding priority inversion

• Remove non-deterministic constructions
– No relative delays, no task termination, no abort, ...

Supports sound real-time development techniques,
such as Rate Monotonic Analysis and

Response Time Analysis

Slide 11

Example: Cyclic tasks

task body Cyclic_With_Deadline is
Period : constant Time_Span := Seconds (1);
Next_Activation : Time := Clock;

begin
loop

delay until Next_Activation;
Next_Activation := Next_Activation + Period;
select

delay until Next_Activation;
-- Notify missed deadline

then abort
-- Do something

end select;
end loop;

end Cyclic_With_Deadline;

task bodytask body Cyclic_With_Deadline Cyclic_With_Deadline isis
Period : Period : constantconstant Time_Span := Seconds (1);Time_Span := Seconds (1);
Next_Activation : Time := Clock;Next_Activation : Time := Clock;

beginbegin
looploop

delay untildelay until Next_Activation;Next_Activation;
Next_Activation := Next_Activation + Period;Next_Activation := Next_Activation + Period;
selectselect

delay until delay until Next_Activation;Next_Activation;
---- Notify missed deadlineNotify missed deadline

then abortthen abort
---- Do somethingDo something

end selectend select;;
end loop;end loop;

endend Cyclic_With_Deadline;Cyclic_With_Deadline;

task body Cyclic is
Period : constant Time_Span := Seconds (1);
Next_Activation : Time := Clock;

begin
loop

delay until Next_Activation;
-- Do something
Next_Activation := Next_Activation + Period;

end loop;
end Cyclic;

task body task body Cyclic Cyclic isis
Period : Period : constantconstant Time_Span := Seconds (1);Time_Span := Seconds (1);
Next_Activation : Time := Clock;Next_Activation : Time := Clock;

beginbegin
looploop

delay until delay until Next_Activation;Next_Activation;
---- Do somethingDo something
Next_Activation := Next_Activation + Period;Next_Activation := Next_Activation + Period;

end loopend loop;;
end end Cyclic;Cyclic;

Slide 12

Real-Time Scheduling

• Ada 95 provides
– Complete and well defined set of language primitives for

Fixed Priority Scheduling

• Ada 2005 allows new schemes
– Non-preemptive

– Round Robin

– Earliest Deadline First (EDF)

– Mixed policies within a partition

Slide 13

Timing Events

• A means of defining code that is executed at a future
point in time
– Efficient stand-alone timer

• Does not need a task
– Executed directly in the context of the interrupt handler
– Reduce the number of

– tasks in a program
– Context switches

• Similar in notion to interrupt handling
– Time itself generates the interrupt

• Useful for
– Short time-triggered procedures
– Imprecise computation

Slide 14

Example: Task deadlines with timing events

task body Cyclic_With_Deadline is
Period : constant Time_Span := Seconds (1);
Next_Activation : Time := Clock;
Deadline_Event : Timing_Event;
Alarm_Cancelled : Boolean;

begin
loop

delay until Next_Activation;
Next_Activation := Next_Activation + Period;
Set_Handler

(Event => Deadline_Event,
At_Time => Next_Activation,
Handler => Watchdog.Timeout'Access);

select
Watchdog.Is_OK;
-- Notify missed deadline

then abort
-- Do something
-- Notify end of computation
Cancel_Handler

(Deadline_Event, Alarm_Cancelled);
end select;

end loop;
end Cyclic_With_Deadline;

task bodytask body Cyclic_With_Deadline Cyclic_With_Deadline isis
Period : Period : constantconstant Time_Span := Seconds (1);Time_Span := Seconds (1);
Next_Activation : Time := Clock;Next_Activation : Time := Clock;
Deadline_Event : Timing_Event;Deadline_Event : Timing_Event;
Alarm_Cancelled : Boolean;Alarm_Cancelled : Boolean;

beginbegin
looploop

delay untildelay until Next_Activation;Next_Activation;
Next_Activation := Next_Activation + Period;Next_Activation := Next_Activation + Period;
Set_HandlerSet_Handler

(Event => Deadline_Event,(Event => Deadline_Event,
At_Time => Next_Activation,At_Time => Next_Activation,
Handler => Watchdog.Timeout'Handler => Watchdog.Timeout'AccessAccess););

selectselect
Watchdog.Is_OK;Watchdog.Is_OK;
---- Notify missed deadlineNotify missed deadline

then abortthen abort
---- Do somethingDo something
---- Notify end of computationNotify end of computation
Cancel_HandlerCancel_Handler

(Deadline_Event, Alarm_Cancelled);(Deadline_Event, Alarm_Cancelled);
end selectend select;;

end loop;end loop;
endend Cyclic_With_Deadline;Cyclic_With_Deadline;

protected Watchdog is
pragma Interrupt_Priority (Interrupt_Priority'Last);
procedure Timeout (Event : in out Timing_Event);
entry Is_OK;

private
Panic : Boolean := False;

end Watchdog;

protected body Watchdog is
procedure Timeout (Event : in out Timing_Event) is
begin

-- Alarm !!!
Panic := True;

end Timeout;
entry Is_OK when Panic is
begin

-- Panic mode activated
Panic := False;

end Is_OK;
end Watchdog;

protectedprotected Watchdog Watchdog isis
pragmapragma Interrupt_Priority (Interrupt_Priority'Last);Interrupt_Priority (Interrupt_Priority'Last);
procedure procedure Timeout (Event : Timeout (Event : in outin out Timing_Event);Timing_Event);
entryentry Is_OK;Is_OK;

privateprivate
Panic : Panic : BooleanBoolean := False;:= False;

end end Watchdog;Watchdog;

protected bodyprotected body Watchdog Watchdog isis
procedureprocedure Timeout (Event : Timeout (Event : in outin out Timing_Event) Timing_Event) isis
beginbegin

---- Alarm !!!Alarm !!!
Panic := True;Panic := True;

endend Timeout;Timeout;
entryentry Is_OK Is_OK whenwhen Panic Panic isis
beginbegin

---- Panic mode activatedPanic mode activated
Panic := False;Panic := False;

endend Is_OK;Is_OK;
end Watchdog;end Watchdog;

Slide 15

Execution Time Support

• Monitor and control task execution time
– Every task has an execution time clock

– Fire an event when a task execution time reaches a specified
value

– Useful in high-integrity (fault tolerant) applications for detecting

– Wrong WCET estimations

– Software errors

• Allocate and support bugdets for groups of tasks
– Useful for some scheduling policies, such as those for aperiodic

servers

Slide 16

Example: Iterative computation

task body Iterative_Task_2 is
ID : aliased Task_ID := Current_Task;
Budget_Manager : Timer (ID'Access);

begin
Set_Handler

(Budget_Manager, Milliseconds (10),
Overrun.Timeout'Access);

select
Overrun.Stop_Task;

then abort
loop

-- Do something
end loop;

end select;
end Iterative_Task_2;

task bodytask body Iterative_Task_2 Iterative_Task_2 isis
ID : aliased Task_ID := Current_Task;ID : aliased Task_ID := Current_Task;
Budget_Manager : Timer (ID'Budget_Manager : Timer (ID'AccessAccess););

beginbegin
Set_HandlerSet_Handler

(Budget_Manager, Milliseconds (10),(Budget_Manager, Milliseconds (10),
Overrun.Timeout'Overrun.Timeout'AccessAccess););

selectselect
Overrun.Stop_Task;Overrun.Stop_Task;

then abortthen abort
looploop

---- Do somethingDo something
end loopend loop;;

end selectend select;;
endend Iterative_Task_2;Iterative_Task_2;

task body Iterative_Task is
Stop_Time : CPU_Time :=

Ada.Execution_Time.Clock + Milliseconds (10);
begin

while
Ada.Execution_Time.Clock < Stop_Time

loop
-- Do something

end loop;
end Iterative_Task;

task body task body Iterative_Task Iterative_Task isis
Stop_TimeStop_Time : : CPU_TimeCPU_Time :=:=

Ada.Execution_Time.ClockAda.Execution_Time.Clock + Milliseconds (10);+ Milliseconds (10);
beginbegin

whilewhile
Ada.Execution_Time.ClockAda.Execution_Time.Clock < < Stop_TimeStop_Time

looploop
---- Do somethingDo something

end loopend loop;;
end end Iterative_Task;Iterative_Task;

protected Overrun is
entry Stop_Task;
procedure Timeout (TM : in out Timer);

private
Budget_Overrun : Boolean := False;

end Overrun;

protected body Overrun is
entry Stop_Task when Budget_Overrun is
begin

-- Budget overrun
Budget_Overrun := False;

end Stop_Task;
procedure Timeout (TM : in out Timer) is
begin

-- Stop computation
Budget_Overrun := True;

end Timeout;
end Overrun;

protected Overrun isprotected Overrun is
entryentry Stop_Task;Stop_Task;
procedureprocedure Timeout (TM : Timeout (TM : in outin out Timer);Timer);

privateprivate
Budget_Overrun : Budget_Overrun : BooleanBoolean := False;:= False;

end end Overrun;Overrun;

protected body Overrun isprotected body Overrun is
entryentry Stop_Task when Budget_Overrun isStop_Task when Budget_Overrun is
beginbegin

---- Budget overrunBudget overrun
Budget_Overrun := False;Budget_Overrun := False;

end Stop_Task;end Stop_Task;
procedureprocedure Timeout (TM : Timeout (TM : in outin out Timer) isTimer) is
beginbegin

---- Stop computationStop computation
Budget_Overrun := True;Budget_Overrun := True;

end Timeout;end Timeout;
end end Overrun;Overrun;

Slide 17

Example: Budgets
task body Cyclic_With_Budget is

Period : constant Time_Span := Seconds (1);
Next_Activation : Time := Clock;
ID : aliased Task_ID := Current_Task;
Budget_Manager : Timer (ID'Access);
Alarm_Cancelled : Boolean;

begin
loop

delay until Next_Activation;
Next_Activation := Next_Activation + Period;
Set_Handler

(TM => Budget_Manager,
At_Time => Next_Activation,
Handler => Overrun.Handler'Access);

select
Overrun.Stop_Task;
-- Notify missed deadline

then abort
-- Do something
-- Notify end of computation
Cancel_Handler

(Budget_Manager, Alarm_Cancelled);
end select;

end loop;
end Cyclic_With_Budget;

task bodytask body Cyclic_With_Budget Cyclic_With_Budget isis
Period : Period : constantconstant Time_Span := Seconds (1);Time_Span := Seconds (1);
Next_Activation : Time := Clock;Next_Activation : Time := Clock;
ID : aliased Task_ID := Current_Task;ID : aliased Task_ID := Current_Task;
Budget_Manager : Timer (Budget_Manager : Timer (ID'ID'AccessAccess););
Alarm_CancelledAlarm_Cancelled : Boolean;: Boolean;

beginbegin
looploop

delay untildelay until Next_Activation;Next_Activation;
Next_Activation := Next_Activation + Period;Next_Activation := Next_Activation + Period;
Set_HandlerSet_Handler

(TM => Budget_Manager,(TM => Budget_Manager,
At_Time => Next_Activation,At_Time => Next_Activation,
Handler => Overrun.Handler'Handler => Overrun.Handler'AccessAccess););

selectselect
Overrun.Stop_Task;Overrun.Stop_Task;
---- Notify missed deadlineNotify missed deadline

then abortthen abort
---- Do somethingDo something
---- Notify end of computationNotify end of computation
Cancel_HandlerCancel_Handler

((Budget_ManagerBudget_Manager, , Alarm_CancelledAlarm_Cancelled););
end selectend select;;

end loop;end loop;
endend Cyclic_With_Budget;Cyclic_With_Budget;

protected Overrun is
entry Stop_Task;
procedure Handler (TM : in out Timer);

private
Budget_Overrun : Boolean := False;

end Overrun;

protected body Overrun is
entry Stop_Task when Budget_Overrun is
begin

-- Budget overrun
Budget_Overrun := False;

end Stop_Task;
procedure Handler (TM : in out Timer) is
begin

-- We have a problem
Budget_Overrun := True;

end Handler;
end Overrun;

protected Overrun isprotected Overrun is
entryentry Stop_Task;Stop_Task;
procedureprocedure Handler (TM : Handler (TM : in outin out Timer);Timer);

privateprivate
Budget_Overrun : Budget_Overrun : BooleanBoolean := False;:= False;

end end Overrun;Overrun;

protected body Overrun isprotected body Overrun is
entryentry Stop_Task when Budget_Overrun Stop_Task when Budget_Overrun isis
beginbegin

---- Budget overrunBudget overrun
Budget_Overrun := False;Budget_Overrun := False;

endend Stop_Task;Stop_Task;
procedureprocedure Handler (TM : Handler (TM : in outin out Timer) Timer) isis
beginbegin

---- We have a problemWe have a problem
Budget_Overrun := True;Budget_Overrun := True;

endend Handler;Handler;
end end Overrun;Overrun;

Slide 18

Safe Object Oriented Programming

• Type extension and inheritance
– Powerful

– Cover most object-oriented design methods

• Code reuse, programming by extension, etc.

– Fine for safety-critical systems

• Dynamic dispatching
– Actual flow of control not known statically

– Worrisome for safety-critical system

• Controlling dynamic dispatching
– Avoid class-wide types

– In Ada, methods are statically bound by default

– Enforced by a language-defined restriction (No_Dispatch)

– Each operation declare explicitly whether it is intended to inherit

Slide 19

Abstract interfaces

• Limited form of multiple inheritance
– Java-like

• Extends the Java model
– Protected, task, and synchronized interfaces

– abstraction that can be implemented either with an active task or with a
passive monitor

– Seamless integration between OO and multi-tasking features

• Much of the power of multiple inheritance
– Without most of the implementation and semantic difficulties

Multiple inheritance of specifications, and
single inheritance of implementation

Slide 20

Example: Interface

type Person is interface;
function Name (This : Person) return Name_Type is abstract;
function Gender (This : Person) return Gender_Type is abstract;

type Worker is interface;
function Name (This : Worker) return Name_Type is abstract;
function Salary (This : Worker) return Natural is abstract;

type Employee is new Person and Worker with
record

Name : Name_Type;
Sex : Gender_Type;
Wage : Natural;

end record;

function Name (This : Employee) return Name_Type;
function Gender (This : Employee) return Gender_Type;
function Salary (This : Employee) return Natural;

type type PersonPerson is interfaceis interface;;
functionfunction Name (This : Person) Name (This : Person) returnreturn Name_Type Name_Type is abstractis abstract;;
functionfunction Gender (This : Person) Gender (This : Person) returnreturn Gender_Type Gender_Type is abstractis abstract;;

typetype Worker Worker is interfaceis interface;;
functionfunction Name (This : Worker) Name (This : Worker) returnreturn Name_Type Name_Type is abstractis abstract;;
functionfunction Salary (This : Worker) Salary (This : Worker) returnreturn Natural Natural is abstractis abstract;;

typetype Employee Employee is newis new Person Person andand Worker Worker withwith
recordrecord

Name : Name_Type;Name : Name_Type;
Sex : Gender_Type;Sex : Gender_Type;
Wage : Natural;Wage : Natural;

end recordend record;;

functionfunction Name (This : Employee) Name (This : Employee) returnreturn Name_Type;Name_Type;
functionfunction Gender (This : Employee) Gender (This : Employee) returnreturn Gender_Type;Gender_Type;
functionfunction Salary (This : Employee) Salary (This : Employee) returnreturn Natural;Natural;

Slide 21

Example: Synchronized interface

type Processing_Entity is task interface;
procedure Replicate (This : Processing_Entity) is abstract;

type Buffer is synchronized interface;
procedure Put (This : in out Buffer; Item : Element) is abstract;
procedure Get (This : in out Buffer; Item : out Element) is abstract;

task type Server_Buffer is new Processing_Entity and Buffer with
entry Replicate;
entry Put (Item : Element);
entry Get (Item : out Element);

end Server_Buffer;

type type Processing_EntityProcessing_Entity is task interfaceis task interface;;
procedureprocedure Replicate (This : Processing_Entity) Replicate (This : Processing_Entity) is abstractis abstract;;

type type BufferBuffer is synchronized interfaceis synchronized interface;;
procedure procedure Put (This : Put (This : in outin out Buffer; Item : Element) Buffer; Item : Element) is abstractis abstract;;
procedure procedure Get (This : Get (This : in outin out Buffer; Item : out Element) Buffer; Item : out Element) is abstractis abstract;;

tasktask typetype Server_BufferServer_Buffer is newis new Processing_EntityProcessing_Entity andand Buffer Buffer withwith
entryentry Replicate;Replicate;
entryentry Put (Item : Element);Put (Item : Element);
entryentry Get (Item : out Element);Get (Item : out Element);

endend Server_BufferServer_Buffer;;

Slide 22

Conclusions

• Increasing need for safe programming
– Ada has an impressive track record in avionics, train control, other

safety-critical domains

– Ada is being considered in new domains

• Ada 2005 addresses the needs of the real-time
and high-integrity communities
– Expressive, even in safety-critical subsets

– Safe tasking

– Safe OOP

– Flexible
– New scheduling policies, new capabilities and features

– High-level abstractions, but …
– Deterministic

– Time analyzable

