Contents   Index   Previous   Next


12.5.3 Formal Array Types

1
   [The class determined for a formal array type is the class of all array types.]

Syntax

2
formal_array_type_definition ::= array_type_definition

Legality Rules

3
   The only form of discrete_subtype_definition that is allowed within the declaration of a generic formal (constrained) array subtype is a subtype_mark.
3.a
Reason: The reason is the same as for forbidding constraints in subtype_indications (see 12.1).
4
   For a formal array subtype, the actual subtype shall satisfy the following conditions:
5
6
7
8
8.a
Ramification: On the other hand, if the formal's components are not aliased, then the actual's components can be either aliased or not.

Examples

9
   Example of formal array types:
10
--  given the generic package 
11
generic
   type Item   is private;
   type Index  is (<>);
   type Vector is array (Index range <>) of Item;
   type Table  is array (Index) of Item;
package P is
   ...
end P;
12
--  and the types 
13
type Mix    is array (Color range <>) of Boolean;
type Option is array (Color) of Boolean;
14
--  then Mix can match Vector and Option can match Table 
15
package R is new P(Item   => Boolean, Index => Color,
                   Vector => Mix,     Table => Option);
16
--  Note that Mix cannot match Table and Option cannot match Vector

Incompatibilities With Ada 83

16.a
{incompatibilities with Ada 83} The check for matching of component subtypes and index subtypes or index ranges is changed from a run-time check to a compile-time check. The Ada 83 rule that ``If the component type is not a scalar type, then the component subtypes shall be either both constrained or both unconstrained'' is removed, since it is subsumed by static matching. Likewise, the rules requiring that component types be the same is subsumed.

Contents   Index   Previous   Next   Legal