Prev | Up | Next | Back | Forward
TOC -- / --.-- / --.--.-- | Index | Search | Syntax | Help


3.6 Array Types -- TOC

(1)
An array object is a composite object consisting of components which all have the same subtype. The name for a component of an array uses one or more index values belonging to specified discrete types. The value of an array object is a composite value consisting of the values of the components.
Syntax
(2)
       array_type_definition ::=
          unconstrained_array_definition | constrained_array_definition
(3)
       unconstrained_array_definition ::=
          array(index_subtype_definition {, index_subtype_definition}) of component_definition
(4)
       index_subtype_definition ::= subtype_mark range <>
(5)
       constrained_array_definition ::=
          array (discrete_subtype_definition {, discrete_subtype_definition}) of component_definition
(6)
       discrete_subtype_definition ::= discrete_subtype_indication | range
(7)
       component_definition ::= [aliased] subtype_indication
Name Resolution Rules
(8)
For a discrete_subtype_definition that is a range, the range shall resolve to be of some specific discrete type; which discrete type shall be determined without using any context other than the bounds of the range itself (plus the preference for root_integer -- see 8.6).
Legality Rules
(9)
Each index_subtype_definition or discrete_subtype_definition in an array_type_definition defines an index subtype; its type (the index type) shall be discrete.
(10)
The subtype defined by the subtype_indication of a component_definition (the component subtype) shall be a definite subtype.
(11)
Within the definition of a nonlimited composite type (or a limited composite type that later in its immediate scope becomes nonlimited -- see 7.3.1 and 7.5), if a component_definition contains the reserved word aliased and the type of the component is discriminated, then the nominal subtype of the component shall be constrained.
Static Semantics
(12)
An array is characterized by the number of indices (the dimensionality of the array), the type and position of each index, the lower and upper bounds for each index, and the subtype of the components. The order of the indices is significant.
(13)
A one-dimensional array has a distinct component for each possible index value. A multidimensional array has a distinct component for each possible sequence of index values that can be formed by selecting one value for each index position (in the given order). The possible values for a given index are all the values between the lower and upper bounds, inclusive; this range of values is called the index range. The bounds of an array are the bounds of its index ranges. The length of a dimension of an array is the number of values of the index range of the dimension (zero for a null range). The length of a one-dimensional array is the length of its only dimension.
(14)
An array_type_definition defines an array type and its first subtype. For each object of this array type, the number of indices, the type and position of each index, and the subtype of the components are as in the type definition; the values of the lower and upper bounds for each index belong to the corresponding index subtype of its type, except for null arrays (see 3.6.1).
(15)
An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each index_subtype_definition defines the corresponding index subtype to be the subtype denoted by the subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for an undefined range (different objects of the type need not have the same bounds).
(16)
A constrained_array_definition defines an array type with a constrained first subtype. Each discrete_subtype_definition defines the corresponding index subtype, as well as the corresponding index range for the constrained first subtype. The constraint of the first subtype consists of the bounds of the index ranges.
(17)
The discrete subtype defined by a discrete_subtype_definition is either that defined by the subtype_indication, or a subtype determined by the range as follows:
(18)
(19)
(20)
The component_definition of an array_type_definition defines the nominal subtype of the components. If the reserved word aliased appears in the component_definition, then each component of the array is aliased (see 3.10).
Dynamic Semantics
(21)
The elaboration of an array_type_definition creates the array type and its first subtype, and consists of the elaboration of any discrete_subtype_definitions and the component_definition.
(22)
The elaboration of a discrete_subtype_definition creates the discrete subtype, and consists of the elaboration of the subtype_indication or the evaluation of the range. The elaboration of a component_definition in an array_type_definition consists of the elaboration of the subtype_indication. The elaboration of any discrete_subtype_definitions and the elaboration of the component_definition are performed in an arbitrary order.

(23)
(24)
Examples
(25)
Examples of type declarations with unconstrained array definitions:
(26)
       type Vector     is array(Integer  range <>) of Real;
       type Matrix     is array(Integer  range <>, Integer range <>) of Real;
       type Bit_Vector is array(Integer  range <>) of Boolean;
       type Roman      is array(Positive range <>) of Roman_Digit; -- see 3.5.2
(27)
Examples of type declarations with constrained array definitions:
(28)
       type Table    is array(1 .. 10) of Integer;
       type Schedule is array(Day) of Boolean;
       type Line     is array(1 .. Max_Line_Size) of Character;
(29)
Examples of object declarations with array type definitions:
(30)
       Grid : array(1 .. 80, 1 .. 100) of Boolean;
       Mix  : array(Color range Red .. Green) of Boolean;
       Page : array(Positive range <>) of Line :=  --  an array of arrays
         (1 | 50  => Line'(1 | Line'Last => '+', others => '-'),  -- see 4.3.3
          2 .. 49 => Line'(1 | Line'Last => '|', others => ' '));
           -- Page is constrained by its initial value to (1..50)

Subclauses

  1. Index Constraints and Discrete Ranges
  2. Operations of Array Types
  3. String Types


Prev | Up | Next | Back | Forward
TOC -- / --.-- / --.--.-- | Index | Search | Syntax | Help

Ada WWW Home -- Email comments, additions, corrections, gripes, kudos, etc. to:

Magnus Kempe -- Magnus.Kempe@di.epfl.ch
Copyright statement
Page last generated: 95-03-12