Prev | Up | Next | Back | Forward
TOC -- / --.-- / --.--.-- | Index | Search | Syntax | Help


3.7 Discriminants -- TOC

(1)
A composite type (other than an array type) can have discriminants, which parameterize the type. A known_discriminant_part specifies the discriminants of a composite type. A discriminant of an object is a component of the object, and is either of a discrete type or an access type. An unknown_discriminant_part in the declaration of a partial view of a type specifies that the discriminants of the type are unknown for the given view; all subtypes of such a partial view are indefinite subtypes.
Syntax
(2)
       discriminant_part ::= unknown_discriminant_part | known_discriminant_part
(3)
       unknown_discriminant_part ::= (<>)
(4)
       known_discriminant_part ::=
          (discriminant_specification {; discriminant_specification})
(5)
       discriminant_specification ::=
          defining_identifier_list : subtype_mark [:= default_expression]
        | defining_identifier_list : access_definition [:= default_expression]
(6)
       default_expression ::= expression
Name Resolution Rules
(7)
The expected type for the default_expression of a discriminant_specification is that of the corresponding discriminant.
Legality Rules
(8)
A known_discriminant_part is only permitted in a declaration for a composite type that is not an array type (this includes generic formal types); a type declared with a known_discriminant_part is called a discriminated type, as is a type that inherits (known) discriminants.
(9)
The subtype of a discriminant may be defined by a subtype_mark, in which case the subtype_mark shall denote a discrete or access subtype, or it may be defined by an access_definition (in which case the subtype_mark of the access_definition may denote any kind of subtype). A discriminant that is defined by an access_definition is called an access discriminant and is of an anonymous general access-to-variable type whose designated subtype is denoted by the subtype_mark of the access_definition.
(10)
A discriminant_specification for an access discriminant shall appear only in the declaration for a task or protected type, or for a type with the reserved word limited in its (full) definition or in that of one of its ancestors. In addition to the places where Legality Rules normally apply (see 12.3), this rule applies also in the private part of an instance of a generic unit.
(11)
Default_expressions shall be provided either for all or for none of the discriminants of a known_discriminant_part. No default_expressions are permitted in a known_discriminant_part in a declaration of a tagged type or a generic formal type.
(12)
For a type defined by a derived_type_definition, if a known_discriminant_part is provided in its declaration, then:
(13)
(14)
(15)
(16)
The type of the default_expression, if any, for an access discriminant shall be convertible to the anonymous access type of the discriminant (see 4.6).
Static Semantics
(17)
A discriminant_specification declares a discriminant; the subtype_mark denotes its subtype unless it is an access discriminant, in which case the discriminant's subtype is the anonymous access-to-variable subtype defined by the access_definition.
(18)
For a type defined by a derived_type_definition, each discriminant of the parent type is either inherited, constrained to equal some new discriminant of the derived type, or constrained to the value of an expression. When inherited or constrained to equal some new discriminant, the parent discriminant and the discriminant of the derived type are said to correspond. Two discriminants also correspond if there is some common discriminant to which they both correspond. A discriminant corresponds to itself as well. If a discriminant of a parent type is constrained to a specific value by a derived_type_definition, then that discriminant is said to be specified by that derived_type_definition.
(19)
A constraint that appears within the definition of a discriminated type depends on a discriminant of the type if it names the discriminant as a bound or discriminant value. A component_definition depends on a discriminant if its constraint depends on the discriminant, or on a discriminant that corresponds to it.
(20)
A component depends on a discriminant if:
(21)
(22)
(23)
(24)
(25)
Each value of a discriminated type includes a value for each component of the type that does not depend on a discriminant; this includes the discriminants themselves. The values of discriminants determine which other component values are present in the value of the discriminated type.
(26)
A type declared with a known_discriminant_part is said to have known discriminants; its first subtype is unconstrained. A type declared with an unknown_discriminant_part is said to have unknown discriminants. A type declared without a discriminant_part has no discriminants, unless it is a derived type; if derived, such a type has the same sort of discriminants (known, unknown, or none) as its parent (or ancestor) type. A tagged class-wide type also has unknown discriminants. Any subtype of a type with unknown discriminants is an unconstrained and indefinite subtype (see 3.2 and 3.3).
Dynamic Semantics
(27)
An access_definition is elaborated when the value of a corresponding access discriminant is defined, either by evaluation of its default_expression or by elaboration of a discriminant_constraint. The elaboration of an access_definition creates the anonymous access type. When the expression defining the access discriminant is evaluated, it is converted to this anonymous access type (see 4.6).

(28)
(29)
(30)
(31)
Examples
(32)
Examples of discriminated types:
(33)
       type Buffer(Size : Buffer_Size := 100)  is        -- see 3.5.4
          record
             Pos   : Buffer_Size := 0;
             Value : String(1 .. Size);
          end record;
(34)
       type Matrix_Rec(Rows, Columns : Integer) is
          record
             Mat : Matrix(1 .. Rows, 1 .. Columns);       -- see 3.6
          end record;
(35)
       type Square(Side : Integer) is new Matrix_Rec(Rows => Side, Columns => Side);
(36)
       type Double_Square(Number : Integer) is
          record
             Left  : Square(Number);
             Right : Square(Number);
          end record;
(37)
       type Item(Number : Positive) is
          record
             Content : Integer;
             --  no component depends on the discriminant
          end record;

Subclauses

  1. Discriminant Constraints
  2. Operations of Discriminated Types


Prev | Up | Next | Back | Forward
TOC -- / --.-- / --.--.-- | Index | Search | Syntax | Help

Ada WWW Home -- Email comments, additions, corrections, gripes, kudos, etc. to:

Magnus Kempe -- Magnus.Kempe@di.epfl.ch
Copyright statement
Page last generated: 95-03-12